• Title/Summary/Keyword: microclimate temperature

Search Result 257, Processing Time 0.022 seconds

Distribution of clothing microclimate for making comfortable military uniform (쾌적한 군복 설계를 위한 의복기후 분포)

  • Kim, Yang-Won
    • Journal of National Security and Military Science
    • /
    • s.1
    • /
    • pp.231-247
    • /
    • 2003
  • To get the basic data for making comfortable military uniforms and to examine the distribution of clothing microclimate, seasonal fluctuations of skin temperature, subjective sensation, and clothing microclimate were measured from 10 males. The subject were questioned on thermal comfort in experiment. Clothing microclimate temperature at breast, skin temperature at four sites (breast, upper arm, thigh, leg), deep body temperature at eardrum( tympanic temperature), and subjective sensation were measured for an hour in the controlled climatic chamber. The subjects felt comfortable when skin temperature were recorded $34.43^{\circ}C$ at breast, $33.53^{\circ}C$ at upper arm, $32.9^{\circ}C$ at thigh, and 32.50 at leg. Then mean skin temperature was $33.55\pm$$0.63^{\circ}C$. Clothing microclimate temperature ranged from 31.2 to $33.8^{\circ}C$, and clothing microclimate humidity ranged from 49.80~52.41%. In the comparison of these results with the microclimate of military uniforms, it needs more insulation in clothing for military uniforms. It also says that military uniforms should be made of the textiles which can control humidity.

  • PDF

The Distribution of Clothing Microclimate on the Upper Body (상반신에서의 의복기후분포)

  • Kim, Yang-Weon;Hong, Kyng-Hi
    • Korean Journal of Human Ecology
    • /
    • v.15 no.4
    • /
    • pp.647-650
    • /
    • 2006
  • The factors affecting clothing comfort are temperature, humidity, and air velocity of clothing microclimate which is the temperature and the humidity between the skin surface and the innermost garment, clothing pressure and clothing texture to the skin. This study was designed to estimate the distribution of clothing microclimate on the upper body. All the data of this study were collected from volunteered male subjects in the controlled climate chamber laboratory in which the temperature was $25\pm1^{\circ}C$, the relative humidity $50\pm5%$, and the air velocity 30cm/sec. All subjects should wear long-sleeved inner wear and pants woven in 100% cotton. Clothing microclimate temperature at 16 sites on the chest and 16 sites on the back was measured. The results were as follows: the distribution of the clothing microclimate temperature on the upper body was $30.6\sim34.7^{\circ}C$ on the breast and $31.5\sim35.4^{\circ}C$ on the back. While a mean temperature on the chest was 33.3$^{\circ}C$, it was 33.1$^{\circ}C$ on the back.

  • PDF

Development of Thermoregulating Textile Materials with Microencapsulated Phase Change Materials(PCM) -Wearing comfort of the developed thermoregulating textile materials- (PCM 마이크로캡슐을 이용한 열조절 섬유소재 개발 -열조절 섬유소재의 착용효과-)

  • 신윤숙;정영옥;전향란;손경희;김성희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.6
    • /
    • pp.767-775
    • /
    • 2004
  • In order to evaluate physiological responses and comfort sensation of the developed thermoregulating textile material, polyester knit fabric was treated with phase change material (PCM) microcapsules by printing. Ten male subjects wearing an experimental best with and without PCMs were seated for 20 minutes, then exercised for 20 minutes, and then seated for 30 minutes in the chamber which was controlled under the temperatures of 20$\pm$1$^{\circ}C$, 50$\pm$5%R.H. The subject's skin temperature, microclimate inside garment and comfort sensation of two experimental bests were compared one another. As a result, the rectal temperature, skin temperature and mean skin temperature were similar in the two groups, and the subjects were not able to perceive the differences in comfort of the two experimental bests. However, the effect of PCM microcapsule could be seen from microclimate temperature and humidity. The microclimate temperature of the PCM garment at chest was significantly higher during exercise. The microclimate humidity of the PCM garment at chest was significantly lower during exercise and rest.

Diagnosis of Office Occupant's Adaptation Level for Thermal Environment (사무실 근무자의 온열환경에 대한 적응수준 진단)

  • Kim, Yang-Weon
    • Korean Journal of Human Ecology
    • /
    • v.12 no.5
    • /
    • pp.747-754
    • /
    • 2003
  • The actual clothing conditions were surveyed to diagnose clothing condition of Korean female in the view point of the adaptation to the thermal environment according to seasonal changes. Then, clothing microclimate, physiological responses, and subjective sensation were investigated through wearing trials on human body in climatic chamber based on the results from the survey. Factors to evaluate validity of clothing condition were clothing weight, clothing microclimate, physiological response of human body, and subjective sensation. The results were as follows: 1. Clothing weight per body surface area of the season was $856g/m^{2}$, $439g/m^{2}$ in summer, $630g/m^{2}$ in fall, and $1184g/m^{2}$ in winter. Cold - resistance of Korean female in office was superior to Japanese, inferior to residents of rural areas of Korea, and similar to male in office. However, in heat - resistance, female in office was inferior to residents of rural areas of Korea. 2. In spring, fall, winter, clothing microclimate temperature was a little higher than that in summer. Therefore, it was not a desirable wearing condition even though the clothing microclimate was comfortable zone. 3. Mean skin temperature of female in office was including within the range of Winslow's comfortable zone, but the range of comfortable zone in mean skin temperature of female was more narrow than Winslow's. Thus, it has problem for female to adaptation to thermal environment.

  • PDF

Subjective Wearing Sensation of Sleepwear and Comfort Properties of the Fabrics in Winter (겨울철 잠옷의 주관적 착용감과 잠옷 소재의 쾌적성능)

  • 권수애;최종명
    • Journal of the Korean Home Economics Association
    • /
    • v.40 no.3
    • /
    • pp.11-20
    • /
    • 2002
  • The purposes of this study were to investigate the subjective wearing sensation of sleepwear, and to evaluate the comfort properties of fabrics used in the sleepwear. Design of experimental clothing was pajamas made with four types of woven fabrics: plain weave and satin weave made by cotton and polyester. The comfort properties were evaluated with respect to thermal retention, Qmax, moisture regain, water vapor transmission, and air permeability. The wear trials of experimental clothing were performed in two different environments, single-detached unit($23{\pm}1^{\circ}C$, $45%{\pm}3%$ R.H.) and apartment($27{\pm}1^{\circ}C$, $40{\pm}3%$ R.H), to evaluate microclimate temperature and humidity, and subjective wearing sensation. The results obtained from this study were as follows: 1. There were significant differences between the two environments on the clothing microclimate. 2. In the single detached unit environment, the microclimate temperature who wore cotton sleepwear was significantly higher than that of subjects wore the polyester sleepwear, whereas the microclimate humidity who wore polyester sleepwear was higher than that of subjects wore the polyester sleepwear. 3. In the apartment environment, the microclimate temperature who wore the polyester sleepwear showed higher than that of cotton sleepwear, whereas there was no significant difference between the cotton and polyester sleepwear on the microclimate humidity. 4 There were partially significant differences in subjective wearing sensation according to the fiber md weaving type of sleepwear regardless environment. 5. There were also partially significant correlations among the heat/moisture transmission properties of fabrics, the clothing microclimate and the subjective wearing sensation of sleepwear.

Layering Effects on Clothing Microclimate, Clothing Insulation and Physiological Responses

  • Park, Joonhee;Yoo, Shinjung
    • International Journal of Human Ecology
    • /
    • v.14 no.2
    • /
    • pp.93-103
    • /
    • 2013
  • This study investigated the relationship of clothing microclimate and physiological responses in order to examine the layering effects on the clothing microclimate as an index to predict clothing thermal insulation ($I_{cl}$). Experiments were conducted in a $15^{\circ}C$ environment on six physically active males. Increased clothing layers resulted in higher mean temperature inside the clothing ($\bar{T}_{cl}$) and $I_{cl}$. The $I_{cl}$ had a high correlation with: $\bar{T}_{cl}$ (r = 0.556), the difference between the innermost surface temperature and the outermost surface temperature at the chest (DST) (r = 0.549) and the temperature inside clothing at the abdomen (r = 0.478). $\bar{T}_{cl}$ had the highest correlation with the temperature inside clothing at the abdomen (r = 0.889). $\bar{T}_{cl}$ also had the highest correlation with $\bar{T}_{sk}$ (r = 0.860). The results showed that the relationship between $I_{cl}$ and $\bar{T}_{cl}$ was linear (p < .01). Thermal comfort had a negative correlation with $\bar{T}_{cl-thigh}$ (r=-0.411) and $\bar{T}_{cl}$ (r = -0.323) (p < .01.)

Evaluation of Clothing Comfort and Anti-atopy Properties by Human Wear Test -Focused to Inner Wear Natural Dyed with Bamboo Charcoal- (인체착용실험에 의한 쾌적성 및 항아토피 성능평가 - 대나무숯 천연염색의류를 중심으로 -)

  • Kim, Sung-Hee;Shin, Youn-Sook
    • Fashion & Textile Research Journal
    • /
    • v.12 no.1
    • /
    • pp.122-128
    • /
    • 2010
  • This study examined several dyeing properties, physiological responses and comfort sensation of cotton knit underwear dyed with bamboo charcoal. The cotton knit underwear dyed with bamboo charcoal and treated with chitosan showed 99.9% antibacterial property and improved deodorization, and colorfastness. Eight children with atopic dermatitis worn underwear dyed with bamboo charcoal during 4 months. Their parents reported fewer itches of children. Wearing cotton knit underwear dyed with bamboo charcoal and non-dyed with bamboo charcoal respectively, these eight children rested for 20 minutes, then exercised for 10 minutes, and then rested for 30 minutes in the room maintained $28{\pm}1^{\circ}C$ and $50{\pm}5%R.H.$ Children's rectal temperature, skin temperature and microclimate inside garment of two types of cotton knit underwear were compared. As a result, the rectal temperature and skin temperature were higher when children were wearing underwear dyed with bamboo charcoal than non-dyed underwear. The microclimate temperature and microclimate humidity at the back of children were lower when children with underwear dyed with bamboo charcoal exercised and recovered.

The Relationship between Clothing Microclimate and Physiological Responses at $15^{\circ}C$ Environment ($15^{\circ}C$ 환경에서 의복기후와 인체생리반응과의 관련성)

  • Park, Joon-Hee;Choi, Jeong-Wha
    • Journal of the Korean Home Economics Association
    • /
    • v.46 no.4
    • /
    • pp.97-105
    • /
    • 2008
  • The objective of this study is to investigate the relationship between clothing microclimate and physiological responses, including subjective sensations, when, in a $15^{\circ}C$ environment, a range of temperatures inside clothing is broadly produced from using various combinations of upper and lower garments. Six male subjects participated in the investigation and the results were as follows. For all types of inside garments, the temperature of the clothing was lower than the skin temperature for the whole body in each case. The mean temperature for inside clothing ($\bar{T}_{cl}$) significantly showed the highest correlation with mean weighted skin temperature (r = 0.816) and was less positively correlated with the temperature of the inside clothing at the chest (r = 0.326) (p < .01). Values for both the energy expenditure and the heart rate were less positively correlated with the clothing microclimate (p < .01). The change of body heat content showed a negative correlation with the surface temperature of the innermost clothing (r = -0.519) and there was a difference between the innermost surface temperature and the outermost surface temperature of the clothing at the chest (r = -0.577). As td increased, the increase of body heat content declined (p < .01). There was a negative correlation between body fat and some of the temperatures inside the clothing (p < .01) and body fat had no significant correlation with the humidity inside the clothing. Subjective sensations were more highly correlated with $\bar{T}_{cl}$ than with the temperature of the inside clothing at the chest and had not significantly correlation with the humidity of the inside clothing. In conclusion, through these results, it can be seen that the temperature inside the clothing was related to various physiological responses and subjective sensations, and that the mean temperature of the inside clothing ($\bar{T}_{cl}$) showed a higher relationship with the temperature of the inside clothing at the abdomen than that at the chest.

UV ray protective function and wear sensation of garment for plastichouse worker (비닐하우스용 작업복의 자외선 차단 성능과 착용감 연구)

  • 최정화;백윤정
    • Korean Journal of Rural Living Science
    • /
    • v.6 no.1
    • /
    • pp.25-30
    • /
    • 1995
  • This study was designed to obtain the basic data developing the UV ray protective garments for the plastichouse workers. Two subjects were volunteered for 1hr. wear test in plastic house, and the ensembles was composed of one of three kinds blouse (UV blocking blouse, polyester/cotton 47/53 blouse, and polyester blouse), shorts, sleeveless undershirts, pants and socks. The measurements were rectal temperature, skin temperature, microclimate inside clothing, subjective sensation, and the colour difference of UV sensor. The results were as follows: 1. Microclimate especially, temperature inside clothing of polyester blouse was the highest among the garments. And UV-proof polyester blouse showed the lower mean skin temperature and microclimate than others. Showing the highest sweat volume. 2. No significant difference on UV ray blocking function among 3 kinds of garment was shown. 3. We could conform that in spring for the plastic house wぉw s garment low thermal insulating value and wide covering area were more important factors than UV blocking function of fabric.

  • PDF

Effect of Ventilation on Heat Stress in the System of Short-Sleeve T-Shirt-Combat Uniform-Chemical, Biological, and Radioactive Protective Clothing (반팔 내의-전투복-화생방보호의 시스템에서 환기가 열적 스트레스에 미치는 영향)

  • Lee, Okkyung;Eom, Rani;Jung, Heesoo;Cho, Kyeong Min;Lee, Yejin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.5
    • /
    • pp.836-847
    • /
    • 2022
  • This study establishes basic data for the development of a new Chemical, Biological, and Radioactive (CBR) protective clothing by selecting the ventilation position to optimize thermal comfort on the basis of the opening and closing of each part. Participants were eight men in their 20s who had previously worn CBR protective clothing. After vigorous exercise and perspiration, the microclimate of the clothing and skin temperature was measured. Results revealed that when the ventilation zipper was opened after exercising, the skin and clothing microclimate temperatures, which had increased during the exercise, decreased in the chest and shoulder blade regions. The clothing microclimate humidity decreased in the chest area. The change was greatest in the chest region; the skin temperature decreased by 0.2℃, the clothing microclimate temperature by 2.7℃, and the clothing microclimate humidity by 3.2%RH through ventilation. Thus, the opening that allows the exchange of accumulated heat and moisture while wearing the CBR protective clothing is efficient.