• Title/Summary/Keyword: microcavity

Search Result 65, Processing Time 0.03 seconds

Effects of a Dielectric Multilayer Mirror on the Lighting Efficiency of Organic Light-Emitting Diodes Studied by Optical Simulation (유전체 다층 거울이 유기발광다이오드의 광효율 향상에 미치는 영향에 관한 광학 시뮬레이션 연구)

  • Lee, Sung-Jun;Ko, Jae-Hyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.3
    • /
    • pp.139-146
    • /
    • 2015
  • The effects of a dielectric multilayer mirror on the efficiency of organic light-emitting diodes (OLEDs) were investigated by using optical simulation. Adoption of a dielectric mirror consisting of alternating SiN and $SiO_2$ layers narrowed the emission spectrum due to the microcavity effect, and increased the outcoupling efficiency by a few percent. The layer thicknesses of the dielectric mirror were adjusted to change the wavelength of the resonance mode, which may be used to increase the color purity.

Organic-layer and reflectivity of transparent electrode dependent, microcavity effect of top-emission organic light-eitting diodes (TE-OLED의 유기물층과 반투명 음전극의 반사도에 따른 마이크로 캐비티 특성)

  • An, Hui-Chul;Na, Su-Hwan;Joo, Hyun-Woo;Mok, Rang-Kyun;Jung, Kyung-Seo;Chio, Seong-Jea;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.299-300
    • /
    • 2009
  • We have studied an organic layer and semitransparent Al cathode thickness dependent optical properties for top-emission organic light-emitting diodes. Device structure is ITO(170nm)/TPD(xnm)/$Alq_3$(ynm)/LiF(0.5nm)/Al(100nm) and Al(100nm)/TPD(xnm)/$Alq_3$(ynm)/LiF(0.5nm)/Al(25nm). While a thickness of total, organic layer was varied from 85nm to 165nm, a ratio of those two layers was kept to be about 2:3. Then it was compared with that of bottom devices. And a thickness of semitransparent Al cathode was varied from 20nm to 30nm for the device with an organic layer thickness of 140nm. We were able to control the emission spectra from the top-emission organic light-emitting diodes.

  • PDF

Novel tandem white OLED panel architecture for wide color gamut and viewing angle

  • Lee, Sung-Hun;Kim, Mu-Gyeom;Song, Jung-Bae;Kim, Sang-Yeol;Tamura, Shinichiro;Kang, Sung-Kee;Kim, Jong-Min;Lee, Sung-Soo;Choi, Jun-Ho;Ha, Jae-Kook;Chu, Chang-Woong;Kim, Chi-Woo;Lee, Jin-Seok
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1112-1115
    • /
    • 2008
  • A very high current efficiency of 28 cd/A for three-mode microcavity tandem WOLED was successfully demonstrated. The 101 % of NTSCu'v' ratio of this white OLED with LCD color filter was achieved. In addition to wide color gamut, the highest delta (u'v') of respective RGB colors among the viewing angles 0 and 60 degree is just 0.042 and that of white color is less than 0.02.

  • PDF

Formation of Thermal Bubble from Particle-Filled Microcavity (미세 입자로 충전된 캐비티에서의 열 기포 형성)

  • Jeong, Kwang-Hun;Lee, Heon-Ju;Chang, Young-Soo;Lee, Yoon-Pyo;Kim, Ho-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.248-255
    • /
    • 2007
  • Thermal bubble formation is a fundamental process in nucleate boiling heat transfer and many microelectromechanical thermal systems. One of the established facts is that heterogeneous nucleation is originated from vapors trapped inside cavities. Based on this, we performed an experimental study on the formation of thermal bubbles from microcavity fabricated by microfabrication technology on a copper plate. The cavity was filled with aluminum particles to enhance thermal bubble formation. We observed the thermal bubble behaviors, such as bubble incipience, diameter, frequency and coalescence during nucleate boiling. The experimental data showed that the superheat required to trigger the bubble formation was significantly reduced when the cavity was filled with microparticles. We found that the initial increase of superheat led to the increase of both the departure diameter and frequency while the further increase of superheat caused multiple bubbles to coalesce resulting in the decrease of departure frequency.

A Study on the Efficiency Effects of Capping Layer on the Top Emission Organic Light Emitting Diode (전면 유기발광 다이오드 기능층 캐핑레이어 적용에 따른 효율상승에 관한 연구)

  • Lee, DongWoon;Cho, Eou Sik;Jeon, Yongmin;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.119-124
    • /
    • 2022
  • Top emission organic light-emitting diode (TEOLED) is commonly used because of high efficiency and good color purity than bottom - emission organic light-emitting device (BEOLED). Unlike BEOLED, TEOLED contain semitransparent metal cathode and capping layer. Because there are many characteristics to consider just simple thickness change, optimizing organic thickness of TEOLED for microcavity is difficult. So, in this study, we optimized Device capping layer at unoptimized micro-cavity structure TEOLED device. And we compare only capping layer with unoptimized microcavity structure can overcome optimized micro-cavity structure device. We used previous our optimized micro-cavity structure to compare each other. As a result, it has been found that the efficiency can be obtained almost the same or higher only capping layer, which is stacked on top of the device and controls only the thickness and refractive index, without complicated structural calculations. This means that higher efficiencies can be obtained more easily in laboratories with limited organic materials or when optimizing new structures etc.

P-OLED Microdisplay Technology

  • Underwood, Ian;Buckley, Alastair;Yates, Chris
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.105-110
    • /
    • 2006
  • The highly integrated nature of polymer based organic light emitting diode (POLED) microdisplay technology, coupled with low voltage and low power electroluminescent light generation, combine to offer a very promising technology for use in portable and personal electronics products. We briefly describe the technology before discussing how to engineer the color gamut using whiteemitting polymer materials, microcavity device structure and color filter absorbance.

  • PDF

Microcavity-enhanced White OLED for efficient lighting application

  • Chin, Byung-Doo;Kim, Jae-Kyeong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1591-1594
    • /
    • 2006
  • In this work, we fabricated efficient white organic light emitting device (WOLED) by the stack of complementary fluorescent dye-doped layers, Effect of dye-doping ratio and thickness of each layers on WOLED efficiency and emission spectrum was investigated. Moreover, out-coupling efficiency enhancement using microlens array was analyzed for bottom and top-emitting device architecture, leading to higher light extraction properties.

  • PDF

Study on the Spatial Mode Selection in a Layered Square Microcavity Laser (두층 사각 구조 미소공진기 레이저에서의 공간 모드 선택 구도 연구)

  • 문희종;박건우;이상범;안경원;이재형
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.36-37
    • /
    • 2003
  • 원형 미소공진기는 Q값이 매우 큰 공진모드가 존재할 수 있어, 광집적회로 등의 초저문턱 미소공진기 레이저에 적용되는 연구가 활발하게 수행되고 있고, 광통신용 Add/Drop Filter, 전-광 (electrical to optical) 직접 변환소자 등의 광소자 분야에 활용하려는 연구가 진행되고 있다. 한편 미소공진기 연구는 원형에서 더 나아가 square, quadrupole, spiral, mismatched two cavities등으로 확장되고 있다. (중략)

  • PDF