• 제목/요약/키워드: microcavity

검색결과 65건 처리시간 0.024초

Electromagnetic Modeling of OLEDs and Its Applications to Advanced OLEDs

  • Wu, Chung-Chih;Lin, Chun-Liang;Cho, Ting-Yi;Yang, Chih-Jen;Lu, Yin-Jui
    • Journal of Information Display
    • /
    • 제7권4호
    • /
    • pp.5-8
    • /
    • 2006
  • The optical structures and rigorous electromagnetic modeling of OLEDs will be discussed of first and then their applications in analyses and designs of various advanced OLED structures, e.g. microcavity OLEDs, tandem OLEDs and top-emitting OLEDs etc., will be reported.

Optical Structure of White OLED for 100% Color Gamut

  • Lee, Baek-Woon;Hwang, Young-In;Shin, Sung-Tae;Ju, Young-Gu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.245-248
    • /
    • 2007
  • We report a novel optical structure for bottomemitting white OLEDs. The structure includes, reformulated color filter, dielectric mirror to enforce cavity resonance, and micro-scatterer to extract more light and diffuse the viewing angle dependency. With the new structure, the color gamut was 104% of that of NTSC, the combined transmission efficiency of the color filter was 83%/3 and the color shift at $45^{\circ}$ was maintained below 0.02 in the 1976 CIE color space. The color performance of White OLED + color filter system can match comparably that of RGB OLED + microcavity system.

  • PDF

광결정 공진기와 링 공진기의 공진특성 결합을 통한 바이오센서 응용 (Applied of Integrated Optical Biosensor based on Combination of Photonic Crystal Micro-Cavity and Ring Resonator)

  • 김홍승;김두근;오금윤;이태경;최영완
    • 전기학회논문지
    • /
    • 제60권4호
    • /
    • pp.817-822
    • /
    • 2011
  • We propose a novel ring structure based on the stadium-shaped ring resonator (SSRR) with dual photonic crystal microcavity (DPCM) for biosensor and analyzed the sensing characteristics. The Q-factor of the photonic crystal microcavity (PCM) can be significantly enhanced when the PCM or DPCM has the same resonance condition as the SSRR. The simulation results show that the Q-factor of the SRR with DPCM was increased by three times in comparison with single PCM structure. We also defined a mutual interference between two PCMs. Assuming a detectable spectral resolution of 10 picometers, a refractive index resolution of $3.03\times10-5$ can be measured on the SSRR-DPCM.

전면 유기 발광 소자의 유기물층과 반투명 전극의 두께 변화에 따른 광학적 특성 (Organic-layer and semitransparent electrode thickness dependent optical properties of top-emission organic light-emitting diodes)

  • 안희철;주현우;나수환;한원근;김태완;이원재;정동회
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.57-58
    • /
    • 2008
  • We have studied an organic layer and semitransparent Al electrode thickness dependent optical properties and microcavity effects for top-emission organic light-emitting diodes. Manufactured top-emission device structure is Al(100nm)/TPD(xnm)/Alq(ynm)/LiF(0.5nm)/Al(25nm). While a thickness of total organic layer was varied from 85nm to 165n, a ratio of those two layers was kept to be about 2:3. Semitransparent Al cathode was varied from 20nm to 30nm for the device with an organic layer total thickness of 140nm. As the thickness of total organic layer increases, the emission spectra show a shift of peak wavelength from 490nm to 580nm, and the full width at half maxima from 90nm to 35nm. The emission spectra show a blue shift as the view angle increases. Emission spectra depending on a transmittance of semitransparent cathode show a shift of peak wavelength from 515nm to 593nm. At this time, the full width at half maximum was about to be a constant of 50nm. With this kind of microcavity effect, we were able to control the emission spectra from the top-emission organic light-emitting diodes.

  • PDF

전면 유기 발광 소자의 유기물층 두께 변화에 따른 광학적 특성 (Organic-layer thickness dependent optical properties of top emission organic light-eitting diodes)

  • 안희철;주현우;나수환;김태완;홍진웅;오용철;송민종
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.413-414
    • /
    • 2008
  • We have studied an organic layer thickness dependent optical properties and microcavity effects for top-emission organic light-emitting diodes. Manufactured top emission device, structure is Al(100nm)ITPD(xnm)/$Alq_3$(ynm)/LiF(0.5nm)/Al(23nm). While a thickness of hole-transport layer of TPD was varied from 35 to 65nm, an emissive layer thickness of $Alq_3$ was varied from 50 to 100nm for two devices. A ratio of those two layers was kept to about 2:3. Variation of the layer thickness changes a traverse time of injected carriers across the organic layer, so that it may affect on the chance of probability of exciton formation. View-angle dependent emission spectra were measured for the optical measurements. Top-emission devices show that the emission peak wavelength shifts to longer wavelength as the organic layer thickness increases. For instance, it shifts from 490 to 555nm in the thickness range that we used. View-angle dependent emission spectra show that the emission intensity decreases as the view-angle increases. The organic layer thickness-dependent emission spectra show that the full width at half maximum decreases as the organic layer thickness increases. Top emission devices show that the full width at half maximum changes from 90 to 35nm as the organic layer thickness increases. In top-emission device, the microcavity effect is more vivid as the organic layer thickness increases.

  • PDF