• 제목/요약/키워드: microbiota community

검색결과 102건 처리시간 0.023초

Roads to Construct and Re-build Plant Microbiota Community

  • Kim, Da-Ran;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • 제38권5호
    • /
    • pp.425-431
    • /
    • 2022
  • Plant microbiota has influenced plant growth and physiology significantly. Plant and plant-associated microbes have flexible interactions that respond to changes in environmental conditions. These interactions can be adjusted to suit the requirements of the microbial community or the host physiology. In addition, it can be modified to suit microbiota structure or fixed by the host condition. However, no technology is realized yet to control mechanically manipulated plant microbiota structure. Here, we review step-by-step plant-associated microbial partnership from plant growth-promoting rhizobacteria to the microbiota structural modulation. Glutamic acid enriched the population of Streptomyces, a specific taxon in anthosphere microbiota community. Additionally, the population density of the microbes in the rhizosphere was also a positive response to glutamic acid treatment. Although many types of research are conducted on the structural revealing of plant microbiota, these concepts need to be further understood as to how the plant microbiota clusters are controlled or modulated at the community level. This review suggests that the intrinsic level of glutamic acid in planta is associated with the microbiota composition that the external supply of the biostimulant can modulate.

Comparison of the fecal microbiota with high- and low performance race horses

  • Taemook Park;Jungho Yoon;YoungMin Yun;Tatsuya Unno
    • Journal of Animal Science and Technology
    • /
    • 제66권2호
    • /
    • pp.425-437
    • /
    • 2024
  • Exercise plays an important role in regulating energy homeostasis, which affects the diversity of the intestinal microbial community in humans and animals. To the best of the authors' knowledge, few studies have reported the associations between horse gut microbiota along with their predicted metabolic activities and the athletic ability of Jeju horses and Thoroughbreds living in Korea. This study was conducted to investigate the association between the gut microbiota and athletic performance in horses. This study sequenced the V3 and V4 hypervariable regions of the partial 16S rRNA genes obtained from racehorse fecal samples and compared the fecal microbiota between high- and low-performance Jeju horses and Thoroughbreds. Forty-nine fecal samples were divided into four groups: high-performance Jeju horses (HJ, n = 13), low-performance Jeju horses (LJ, n = 17), high-performance Thoroughbreds (HT, n = 9), and low-performance Thoroughbreds (LT, n = 10). The high-performance horse groups had a higher diversity of the bacterial community than the low-performance horse groups. Two common functional metabolic activities of the hindgut microbiota (i.e., tryptophan and succinate syntheses) were observed between the low-performance horse groups, indicating dysbiosis of gut microbiota and fatigue from exercise. On the other hand, high-performance horse groups showed enriched production of polyamines, butyrate, and vitamin K. The racing performance may be associated with the composition of the intestinal microbiota of Jeju horses and Thoroughbreds in Korea.

Microbiota Communities of Healthy and Bacterial Pustule Diseased Soybean

  • Kim, Da-Ran;Kim, Su-Hyeon;Lee, Su In;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • 제38권4호
    • /
    • pp.372-382
    • /
    • 2022
  • Soybean is an important source of protein and for a wide range of agricultural, food, and industrial applications. Soybean is being affected by Xanthomonas citri pv. glycines, a causal pathogen of bacterial pustule disease, result in a reduction in yield and quality. Diverse microbial communities of plants are involved in various plant stresses is known. Therefore, we designed to investigate the microbial community differentiation depending on the infection of X. citri pv. glycines. The microbial community's abundance, diversity, and similarity showed a difference between infected and non-infected soybean. Microbiota community analysis, excluding X. citri pv. glycines, revealed that Pseudomonas spp. would increase the population of the infected soybean. Results of DESeq analyses suggested that energy metabolism, secondary metabolite, and TCA cycle metabolism were actively diverse in the non-infected soybeans. Additionally, Streptomyces bacillaris S8, an endophyte microbiota member, was nominated as a key microbe in the healthy soybeans. Genome analysis of S. bacillaris S8 presented that salinomycin may be the critical antibacterial metabolite. Our findings on the composition of soybean microbiota communities and the key strain information will contribute to developing biological control strategies against X. citri pv. glycines.

Stunting and Gut Microbiota: A Literature Review

  • Jessy Hardjo;Nathasha Brigitta Selene
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제27권3호
    • /
    • pp.137-145
    • /
    • 2024
  • Stunting, a condition characterized by impaired growth and development in children, remains a major public health concern worldwide. Over the past decade, emerging evidence has shed light on the potential role of gut microbiota modulation in stunting. Gut microbiota dysbiosis has been linked to impaired nutrient absorption, chronic inflammation, altered short-chain fatty acid production, and perturbed hormonal and signaling pathways, all of which may hinder optimal growth in children. This review aims to provide a comprehensive analysis of existing research exploring the bidirectional relationship between stunting and the gut microbiota. Although stunting can alter the gut microbial community, microbiota dysbiosis may exacerbate it, forming a vicious cycle that sustains the condition. The need for effective preventive and therapeutic strategies targeting the gut microbiota to combat stunting is also discussed. Nutritional interventions, probiotics, and prebiotics are among the most promising approaches to modulate the gut microbiota and potentially ameliorate stunting outcomes. Ultimately, a better understanding of the gut microbiota-stunting nexus is vital for guiding evidence-based interventions that can improve the growth and development trajectory of children worldwide, making substantial strides toward reducing the burden of stunting in vulnerable populations.

The gut microbiota: a key regulator of metabolic diseases

  • Yang, Jin-Young;Kweon, Mi-Na
    • BMB Reports
    • /
    • 제49권10호
    • /
    • pp.536-541
    • /
    • 2016
  • The prevalence of obesity and type 2 diabetes, two closely linked metabolic disorders, is increasing worldwide. Over the past decade, the connection between these disorders and the microbiota of the gut has become a major focus of biomedical research, with recent studies demonstrating the fundamental role of intestinal microbiota in the regulation and pathogenesis of metabolic disorders. Because of the complexity of the microbiota community, however, the underlying molecular mechanisms by which the gut microbiota is associated with metabolic disorders remain poorly understood. In this review, we summarize recent studies that investigate the role of the microbiota in both human subjects and animal models of disease and discuss relevant therapeutic targets for future research.

Effects of Antibiotics on the Uterine Microbial Community of Mice

  • Sang-Gyu Kim;Dae-Wi Kim;Hoon Jang
    • 한국발생생물학회지:발생과생식
    • /
    • 제26권4호
    • /
    • pp.145-153
    • /
    • 2022
  • The gut microbiota is involved in the maintenance of physiological homeostasis and is now recognized as a regulator of many diseases. Although germ-free mouse models are the standard for microbiome studies, mice with antibiotic-induced sterile intestines are often chosen as a fast and inexpensive alternative. Pathophysiological changes in the gut microbiome have been demonstrated, but there are no reports so far on how such alterations affect the bacterial composition of the uterus. Here we examined changes in uterine microbiota as a result of gut microbiome disruption in an antibiotics-based sterile-uterus mouse model. Sterility was induced in 6-week-old female mice by administration of a combination of antibiotics, and amplicons of a bacteria marker gene (16S rRNA) were sequenced to decipher bacterial community structures in the uterus. At the phylum-level, Proteobacteria, Firmicutes, and Actinobacteria were found to be dominant, while Ralstonia, Escherichia, and Prauserella were the major genera. Quantitative comparisons of the microbial contents of an antibiotic-fed and a control group revealed that the treatment resulted in the reduction of bacterial population density. Although there was no significant difference in bacterial community structures between the two animal groups, β-diversity analysis showed a converged profile of uterus microbiotain the germ-free model. These findings suggest that the induction of sterility does not result in changes in the levels of specific taxa but in a reduction of individual variations in the mouse uterus microbiota, accompanied by a decrease in overall bacterial population density.

Variations in Kiwifruit Microbiota across Cultivars and Tissues during Developmental Stages

  • Su-Hyeon Kim;Da-Ran Kim;Youn-Sig Kwak
    • The Plant Pathology Journal
    • /
    • 제39권3호
    • /
    • pp.245-254
    • /
    • 2023
  • The plant microbiota plays a crucial role in promoting plant health by facilitating the nutrient acquisition, abiotic stress tolerance, biotic stress resilience, and host immune regulation. Despite decades of research efforts, the precise relationship and function between plants and microorganisms remain unclear. Kiwifruit (Actinidia spp.) is a widely cultivated horticultural crop known for its high vitamin C, potassium, and phytochemical content. In this study, we investigated the microbial communities of kiwifruit across different cultivars (cvs. Deliwoong and Sweetgold) and tissues at various developmental stages. Our results showed that the microbiota community similarity was confirmed between the cultivars using principal coordinates analysis. Network analysis using both degree and eigenvector centrality indicated similar network forms between the cultivars. Furthermore, Streptomycetaceae was identified in the endosphere of cv. Deliwoong by analyzing amplicon sequence variants corresponding to tissues with an eigenvector centrality value of 0.6 or higher. Our findings provide a foundation for maintaining kiwifruit health through the analysis of its microbial community.

Fermentative products and bacterial community structure of C4 forage silage in response to epiphytic microbiota from C3 forages

  • Wang, Siran;Shao, Tao;Li, Junfeng;Zhao, Jie;Dong, Zhihao
    • Animal Bioscience
    • /
    • 제35권12호
    • /
    • pp.1860-1870
    • /
    • 2022
  • Objective: The observation that temperate C3 and tropical C4 forage silages easily produce large amounts of ethanol or acetic acid has puzzled researchers for many years. Hence, this study aimed to assess the effects of epiphytic microbiota from C3 forages (Italian ryegrass and oat) on fermentative products and bacterial community structure in C4 forage (sorghum) silage. Methods: Through microbiota transplantation and γ-ray irradiation sterilization, the irradiated sorghum was treated: i) sterile distilled water (STSG); ii) epiphytic microbiota from sorghum (SGSG); iii) epiphytic microbiota from Italian ryegrass (SGIR); iv) epiphytic microbiota from oat (SGOT). Results: After 60 days, all the treated groups had high lactic acid (>63.0 g/kg dry matter [DM]) contents and low pH values (<3.70), acetic acid (<14.0 g/kg DM) and ammonia nitrogen (<80.0 g/kg total nitrogen) contents. Notably, SGIR (59.8 g/kg DM) and SGOT (77.6 g/kg DM) had significantly (p<0.05) higher ethanol concentrations than SGSG (14.2 g/kg DM) on day 60. After 60 days, Lactobacillus were predominant genus in three treated groups. Higher proportions of Chishuiella (12.9%) and Chryseobacterium (7.33%) were first found in silages. The ethanol contents had a positive correlation (p<0.05) with the abundances of Chishuiella, Acinetobacter, Stenotrophomonas, Chryseobacterium, and Sphingobacterium. Conclusion: The epiphytic bacteria on raw materials played important roles in influencing the silage fermentation products between temperate C3 and tropical C4 forages. The quantity and activity of hetero-fermentative Lactobacillus, Chishuiella, Acinetobacter, Stenotrophomonas, Chryseobacterium, and Sphingobacterium may be the key factors for the higher ethanol contents and DM loss in silages.

Effect of Scenedesmus sp. CHK0059 on Strawberry Microbiota Community

  • Cho, Gyeongjun;Jo, Gyeong Seo;Lee, Yejin;Kwak, Youn-Sig
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권7호
    • /
    • pp.862-868
    • /
    • 2022
  • Microalgae are photosynthetic cyanobacteria and eukaryotic microorganisms, mainly living in the water. In agriculture, numerous studies have been conducted to utilize microalgae as a biostimulant resource. Scenedesmus has been known to be one such microalga that can promote plant growth by secretion of auxin or cytokinin hormone analogs. However, no research has been performed on the effect of microalgae treatment on plant microbiota communities. This study was conducted to investigate the mode of action of microalgae as biostimulants in a plant microbiota perspective by using Scenedesmus sp. CHK0059 (also known as species Chlorella fusca), which has been well documented as a biostimulant for strawberries. The strawberry cultivar Keumsil was bred with Seolhyang and Maehyang as the parent cultivars. Using these three cultivars, microbiota communities were evaluated for changes in structural composition according to the CHK0059 treatment. CHK0059-treated Seolhyang, and CHK0059-untreated Maehyang were similar in microbial diversity in the endosphere. From a microbiota community perspective, the diversity change showed that CHK0059 was affected by the characteristics of the host. Conversely, when CHK0059 treatment was applied, populations of Streptomyces and Actinospica were observed in the crown endosphere.

Microbial Modulation in Inflammatory Bowel Diseases

  • Jongwook Yu;Jae Hee Cheon
    • IMMUNE NETWORK
    • /
    • 제22권6호
    • /
    • pp.44.1-44.28
    • /
    • 2022
  • Gut dysbiosis is one of prominent features in inflammatory bowel diseases (IBDs) which are of an unknown etiology. Although the cause-and-effect relationship between IBD and gut dysbiosis remains to be elucidated, one area of research has focused on the management of IBD by modulating and correcting gut dysbiosis. The use of antibiotics, probiotics either with or without prebiotics, and fecal microbiota transplantation from healthy donors are representative methods for modulating the intestinal microbiota ecosystem. The gut microbiota is not a simple assembly of bacteria, fungi, and viruses, but a complex organ-like community system composed of numerous kinds of microorganisms. Thus, studies on specific changes in the gut microbiota depending on which treatment option is applied are very limited. Here, we review previous studies on microbial modulation as a therapeutic option for IBD and its significance in the pathogenesis of IBD.