• Title/Summary/Keyword: microbiota cluster

Search Result 11, Processing Time 0.022 seconds

Fecal Microbiota Profiling of Holstein and Jersey, in South Korea : A Comparative Study (국내에서 사육되는 Holstein 젖소과 Jersey 젖소의 대변 미생물 분석 : 비교연구)

  • Gwangsu Ha;Ji-Won Seo;Hee Gun Yang;Se Won Park;Soo-Young Lee;Young Kyoung Park;RanHee Lee;Do-Youn Jeong;Hee-Jong Yang
    • Journal of Life Science
    • /
    • v.33 no.7
    • /
    • pp.565-573
    • /
    • 2023
  • In light of the complex interactions between the host animal and its resident gut microbiomes, studies of these microbial communities as a means to improve cattle production are important. This study was conducted to analyze the intestinal microorganisms of Holstein (HT) and Jersey (JS), raised in Korea and to clarify the differences in microbial structures according to cattle species through next-generation sequencing. The alpha-diversity analysis revealed that most species richness and diversity indices were significantly higher in JS than in HT whereas phylogenetic diversity, which is the sum of taxonomic distances, is not significant. Microbial composition analysis showed that the intestinal microbial community structure of the two groups differed. In the both groups, a significant correlation was observed among the distribution of several microbes at the family level. In particular, a highly significant correlation (p<0.0001) among a variety of microbial distributions was found in JS. Beta-diversity analyis was to performed to statistically verify whether a difference exists in the intestinal microbial community structure of the two groups. Principal coordinate analysis and unweighted pair group method with arithmetic mean (UPGMA) clustering analysis showed separation between the HT and JS clusters. Meanwhile, permutational multivariate analysis of variance (PERMANOVA) revealed that their microbial structures are significantly different (p<0.0001). LEfSe biomarker analysis was performed to discover the differenc microbial features between the two groups. We found that several microbes, such as Firmicutes, Bacilli, Moraxellaceae and Pseudomonadales account for most of the difference in intestinal microbial community structure between the two groups.