• Title/Summary/Keyword: microbial strain

Search Result 633, Processing Time 0.027 seconds

THE ANTIMICROBIAL EFFECT OF HORSERADISH (ARMORACIA RUSTICANA) ROOT EXTRACTS AGAINST OBLIGATE ANAEROBES IN ROOT CANAL (치근관 내 편성 혐기성 세균에 대한 서양산 고추냉이 뿌리 추출물의 항균효과)

  • Lee, Won-Ju;Park, Ho-Won;Shin, Il-Sik;Lee, Ju-Hyun;Seo, Hyun-Woo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.2
    • /
    • pp.237-244
    • /
    • 2009
  • When the symptom of periapical infection is not released by mechanical instrumentation. anti-microbial agents including antibiosis become necessary in order to remove microorganisms from the root canal. Since anti-microbial agents of natural origins are currently popular, more natural remedies are being sought out. As it turns out, it is well known isothiocyanates (ITCs) in horseradish root extract have anti-microbial activity from many studies. In this research, anti-microbial effects of horseradish root extract and chlorhexidine, a typical anti-microbial agent, were investigated and compared against two kinds of obligate anaerobes. Fusobacterium nucleatum and Prevotella nigrescens, that are often discovered in infected root canal, and Clostridium perfringens, which is resistant to antibiotics and frequently used as a control strain for antibacterial studies 1. The MIC and MBC of horseradish root extract were ranged from 87 to 470 ppm and from 156 to 625 ppm against three kinds of obligate anaerobes, respectively. Horseradish root extract showed the strongest anti-bacterial activity (MBC, 156 ppm) against F. nucleatum and also showed anti-bacterial activity against antibiotic resistant obligate anaerobes. C. perfringens. 2. The MIC and MBC of chlorhexidine were ranged from 3.12 to 6.25 ppm and 10.94 ppm against three kinds of obligate anaerobes, respectively. 3. The MIC with 87-470 ppm of horseradish root exact has the same growth inhibiting effect as the one of 3.12-6.25 ppm of chlorhexidine. Likewise, the MBC with 156-625 ppm of horseradish has the similar bactericidal effect as 10.94 ppm of chlorhexidine.

  • PDF

Fusaric Acid Production in Fusarium oxysporum Transformants Generated by Restriction Enzyme-Mediated Integration Procedure (Restriction Enzyme-Mediated Integration 방법으로 확보한 Fusarium oxysporum 형질전환체의 후자리산 생성능 분석)

  • Lee, Theresa;Shin, Jean Young;Son, Seung Wan;Lee, Soohyung;Ryu, Jae-Gee
    • Research in Plant Disease
    • /
    • v.19 no.4
    • /
    • pp.254-258
    • /
    • 2013
  • Fusaric acid (FA) is a mycotoxin produced by Fusarium species. Its toxicity is relatively low but often associated with other mycotoxins, thus enhancing total toxicity. To date, biosynthetic genes or enzymes for FA have not been identified in F. oxysporum. In order to explore the genetic element(s) for FA biosynthesis, restriction enzyme mediated integration (REMI) procedure as an insertional mutagenesis was employed using FA producing-F. oxysporum strains. Genetic transformation of two F. oxysporum strains by REMI yielded more than 7,100 transformants with efficiency of average 3.2 transformants/${\mu}g$ DNA. To develop a screening system using phytotoxicity of FA, eleven various grains and vegetable seeds were tested for germination in cultures containing FA: Kimchi cabbage seed was selected as the most sensitive host. Screening for FA non-producer of F. oxysporum was done by growing each fungal REMI transformant in Czapek-Dox broth for 3 weeks at $25^{\circ}C$ then observing if the Kimchi cabbage seeds germinated in the culture filtrate. Of more than 5,000 REMI transformants screened, fifty-three made the seeds germinated, indicating that they produced little or fewer FA. Among them, twenty-six were analyzed for FA production by HPLC and two turned out to produce less than 1% of FA produced by a wild type strain. Sequencing of genomic DNA regions (252 bp) flanking the vector insertion site revealed an uncharacterized genomic region homologous (93%) to the F. fujikuroi genome. Further study is necessary to determine if the vector insertion sites in FA-deficient mutants are associated with FA production.

Isolation and Characterization of Bacillus subtilis MP56 with Antimicrobial Activity against MDR (Multi Drug Resistant) Strains (다약제내성균에 대한 항균 활성을 가지는 Bacillus subtilis MP56 균주의 분리 및 특성분석)

  • Park, Sungyong;Yoo, Jincheol;Seong, Chinam;Cho, Seungsik
    • Korean Journal of Microbiology
    • /
    • v.49 no.1
    • /
    • pp.90-94
    • /
    • 2013
  • A new Bacillus strain designated as MP56 producing antimicrobial substance has been isolated from the mud flat of Korea. The strain MP56 was found to exhibit broad spectrum of antimicrobial activity against Gram-positive pathogenic microorganisms and MDR (multi drug resistant) strains. The 16S rRNA sequence revealed that the MP56 was closely related to Bacillus subtilis with 99.93% homology. The optimal medium composition for production of antimicrobial substance in the B. subtilis MP56 were 1% mannitol, 1% oat meal, 0.01% $CaCl_2$. Antimicrobial activity of the culture broth against different pathogenic strains was assessed using the antimicrobial spectrum. The result suggests that Bacillus strain MP56 produces high quality antimicrobial substance that might be very useful to control varieties of pathogenic microbial growth.

Studies on the Microbial Glucose Isomerase Part 2. Culture Conditions of Streptomytes sp. K-14 in Producing Glucose Isomerase (미생물의 포도당 이성화효소에 관한 연구 (제2보) Streptomyces sp. K-14 균주의 배양특성에 하여)

  • Tai Wha Chung;Moon H. Han
    • Microbiology and Biotechnology Letters
    • /
    • v.4 no.4
    • /
    • pp.145-151
    • /
    • 1976
  • Cultural characteristics of a strain of Streptomyces sp. K-14 (KFCC 35051) producing glucose isomerase were demonstrated. The glucose isomerase was produced when the strain was grown in the medium containing pure xylan or xylan.containing materials such as wheat bran or com cob. The optimum condition was attained in a culture medium composed of 3 % wheat bran or com cob, 2 % com steep liquor, 0.1% $MgSO_4$$7H_2O$ and 0.012 % $CoSO_4$$7H_2O$ for the production of the glucose isomera,e. The production of the enzyme reached to a maximum level when the strain was cultured for 40 hrs $30^{\circ}C$ and pH 7.0.

  • PDF

Analysis of Prokaryote Communities in Korean Traditional Fermented Food, Jeotgal, Using Culture-Dependent Method and Isolation of a Novel Strain (배양 분리법을 통한 젓갈 내 원핵 세균 군집 분석 및 신규 미생물의 분리)

  • Kim, Min-Soo;Park, Eun-Jin;Jung, Mi-Ja;Roh, Seong-Woon;Bae, Jin-Woo
    • Korean Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.26-31
    • /
    • 2009
  • This study was aimed at the analysis of prokaryote communities in Korean traditional fermented food, jeotgal, and isolation of a novel strain from jeotgal by using culture-dependent and molecular biological approaches. Seventeen kinds of jeotgal were selected on the basis of its origins and sources. The samples were inoculated on 12 kinds of media. 308 isolates were selected randomly by morphological features, and its 16S rRNA gene sequences was amplified by PCR technique with bacteria and archaea specific primers (8F, 21F, and 1492R). The 16S rRNA gene sequences were compared with those in EzTaxon and GenBank databases. DNA-DNA hybridization was performed to identify a novel strain. As a result, the majority of the isolates were lactic acid bacteria (Leuconostoc, Weisella, Lactococcus, Lactobacillus, Carnobacterium, Marinilactibacillus), Bacillus, Pseudomonas, Micrococcus, Brevibacterium, Microbacterium and Kocuria in 17 kinds of jeotgal. The strains belonging to Salinicoccus, Halomonas, Cobetia, Lentibacillus, Paracoccus, and Psychrobacter were isolated as minor ones. Fourteen novel species were identified based on phylogenetic analysis.

Isolation of indigenous Lactobacillus plantarum for malolactic fermentation (말로락틱 발효에 적합한 토착 Lactobacillus plantarum 분리)

  • Heo, Jun;Lee, Chan-Mi;Park, Moon Kook;Jeong, Do-Youn;Uhm, Tai-Boong
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.169-176
    • /
    • 2015
  • The malolactic fermentation (MLF), which is widely used in winemaking, is the conversion of malic acid to lactic acid conducted by the malolactic enzyme (Mle) of lactic acid bacteria. In order to select the strains with MLF among 54 lactic acid bacteria isolated from the traditionally fermented foods, we designed a primer set that specifically targets the conserved regions of the mle gene and then selected four strains that harbor the mle gene of Lactobacillus plantarum. All strains were identified as L. plantarum by analyzing the 16S rRNA sequences, biochemical properties, and the PCR products of the recA gene. From comparison of the mle gene sequences consisting of 1,644 bp, the nucleotide and amino acid sequence of strain JBE60 correspond to 96.7% and 99.5% with those of other three strains, respectively. The strain JBE60 showed the highest resistant against 10% (v/v) ethanol among the strains. The strains lowered the concentration of malic acid to average 43%. Considering the ethanol resistance and conversion of malic acid, the strain JBE60 is considered as a potential starter for the malolactic fermentation.

Thermostable $\alpha$-Amylase Production by Thermophilic Bacillus sp. TR-25 lsolated from Extreme Enviroment (극한환경에서 분리한 고온성 Bacillus sp. TR-25에 위한 내열성 $\alpha$-amylase의 생산)

  • 노석범;손홍주;이종근
    • Journal of Life Science
    • /
    • v.7 no.1
    • /
    • pp.30-38
    • /
    • 1997
  • For screening thermostable $\alpha$-amylase from thermophiles, various samples from extreme environments such as hot spring and sewage near them, and compoat, wereexamined microbial growth in enrichment culture medium at 55$\circ$C on the assumption that enzymes from thermophiles are inevitable thermostable. One strain showing higher $\alpha$-amylase activity was pure cultured and designated as Bacillus sp. TR-25 from the results of morphological, cultural and physiological characteristics. The most important carbon sourses for the enzyme production were soluble starch, dextrin, potato starch and corn starch. Glucose and fructose had a catabolite repression on the enzyme production. The good nitrogen sources for the enzyme production were yeat extract, nutrient broth, tryptone, corn steep liquor and ammonium sulfate. The enzyme production was accelerated by addition of CaCl$_{2}$. $\cdot $ H$_{2}$O. The optimal medium composition for the enzyme production was soluble starch 2.0%, yeast extract 0.55, CaCl$_{2}$ $\cdot $ 2H$_{2}$O 0.015, Tween 80 0.001%, pH8.0, respectively. In jar fermenter culture, this strain shows a rapid growth and required cheaper carbon and nitrogen source. These properties are very useful to fermentation industry. The $\alpha$-amylase of this strain demonstrated a maximum activity at 80$\circ$C, pH 5.0, respectively. And calcium ion did not improve thermostability of the enzyme. At 10$0^{\circ}C$, this enzyme has 235 of relative activity. Transformation was carried out by thermophilic Bacillus sp. TR-25 genomic DNA. As a result, the transformant has increased thermostable $\alpha$-amylase activity.

  • PDF

Establishment of Culture System of a New Strain NT0423 of Bacillus thuringiensis (새로운 Bacillus thuringiensis NT0423 균주의 배양체계)

  • 김호산;노종열;이대원;우수동;강석권
    • Korean journal of applied entomology
    • /
    • v.37 no.2
    • /
    • pp.187-191
    • /
    • 1998
  • For efficient and economical production of Btrc,illus tlz~rr.ingi~r1~sstirsa in NT0423 as amicrobial-control agents, a new culture medium and culture condition were developed. Five mediadesignatzd as SWI I , SW14, SW23. SW32 and SW4I were prepared ~ : i t hv arious mixture ratio ofsoybean cake and wheat bran. It was founcl that in terms of the cell growth rate and development ofsporulation of B, thrri.il~girrl.sis strain NT0423 in all SW culture media were more efficient than those inGYS and in LB media. Total cell number in all SW media showed similar values, hut SW32 lnediilm wasthe most efficient in the development of spore, which amo~~ntetod 3.7 x 10XC FUImI. Also. at the pHranging frorn 6.2 to 7.3 in the mediiun~ no ad\:erse effect was not made in the culture of B. thur-ingicnsisstrain NT0423. The optimal volume (%) of SW32 mecliuni in a 5 1 fernientor was determined as 4 8\rolume of total niediuni. resulting ill growth (4.2 x 1OTCFUlrnl) of H. t1~~irir1,yirrz.ssit.vr ain NT0423. As H.t l i ~ t r i t ~ g iw~ a~s~ csuil~tu rcd in the shakc-flash and 5 1 fcrnientor. bacterial cells were yielded to 1 X 10"CFUIml and 5 x I O1oCFLJlml.FUIml and 5 x I O1oCFLJlml.

  • PDF

Effect of Selected Inoculant Applications on Chemical Compositions and Fermentation Characteristics of High Moisture Rye Silage

  • Lee, Seong Shin;Jeong, Seung Min;Seo, Myeong Ji;Joo, Young Ho;Paradhipta, Dimas Hand Vidya;Seong, Pil Nam;Kim, Sam Churl
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.3
    • /
    • pp.155-161
    • /
    • 2022
  • The aim of this study was to investigate the effect of isolated lactic acid bacteria (LAB) on the quality of high moisture rye silage. Rye forage (Secale cereale L.) was harvested at the heading stage (27.3% of dry matter (DM)) and cut into approximately 3-5 cm lengths. Then, the forage divided into 4 treatments with different inoculants: 1) No additives (CON); 2) Lactobacillus brevis strain 100D8 at a 1.2 × 105 colony-forming unit (cfu)/g of fresh forage (LBR); 3) Leuconostoc holzapfelii strain 5H4 at a 1.0 × 105 cfu/g of fresh forage (LHO); and 4) Mixture of LBR and LHO (1:1 ratio) applied at a 1.0 × 105 cfu/g of fresh forage (MIX). About 3 kg of forage from each treatment was ensiled into a 20 L mini-bucket silo in quadruplicate for 100 days. After silo opening, silage was collected for analyses of chemical compositions, in vitro nutrient digestibilities, fermentation characteristics, and microbial enumerations. The CON silage had the highest concentrations of neutral detergent fiber and acid detergent fiber (p = 0.006; p = 0.008) and a lowest in vitro DM digestibility (p < 0.001). The pH was highest in CON silage, while lowest in LBR and MIX silages (p < 0.001). The concentrations of ammonia-N, lactate, and acetate were highest in LBR silage (p = 0.008; p < 0.001; p < 0.001). Propionate and butyrate concentrations were highest in CON silage (p = 0.004; p < 0.001). The LAB and yeast counts were higher in CON and LHO silages compare to LBR and MIX silages (p < 0.001). However, the mold did not detect in all treatments. Therefore, this study could conclude that L. brevis 100D8 and Leu. holzapfelii strain 5H4 can improve the digestibility and anti-fungal activity of high moisture rye silage.

Medium optimization for growth of Bacillus amyloliquefaciens ISP-5 strain and evaluation of plant growth promotion using lettuce (Bacillus amyloliquefaciens ISP-5 균주의 배지 최적화 및 상추를 이용한 식물 생장 촉진 평가)

  • Kang-Hyun Choi;Sun Il Seo;Haeseong Park;Ji-hwan Lim;Pyoung Il Kim
    • Journal of Plant Biotechnology
    • /
    • v.49 no.4
    • /
    • pp.356-361
    • /
    • 2022
  • Bacillus sp. is a useful strain for agriculture because it promotes plant growth and controls plant pathogens through a variety of mechanisms. In this study, we obtained a microbial preparation with a high number of viable cells by culturing newly isolated soil bacteria on an optimized medium. Subsequently, we applied this preparation to lettuce to enhance its growth and yield. First, B. amyloliquefaciens ISP-5 was isolated from soil. Next, optimization of culture medium was carried out using 5 L scale fermenters. When culturing B. amyloliquefaciens ISP-5 on this optimized medium, the number of viable cells was approximately 1000 times higher than that obtained from culturing on the commercial medium. Afterwards, the plant growth promotion properties of the ISP-5 strain were evaluated using lettuce as a test plant. Foliar spray treatment of lettuce was carried out by inoculating half the standard concentration suspension (0.5 × 107 cfu/ml). As a result, leaf width increased by 8.6% and leaf length increased by 12.9% compared to the control group. Live weight also increased by 24.2% and dry weight by 23.9%. Considering the results from field test, B. amyloliquefaciens ISP-5 showed potential as a plant growth-promoting bacteria.