• Title/Summary/Keyword: microbial profiles

Search Result 161, Processing Time 0.028 seconds

Profiles of Toxin Genes and Antibiotic Susceptibility of Bacillus cereus Isolated from Perilla Leaf and Cultivation Areas (들깻잎과 생산환경에서 분리한 Bacillus cereus의 독소 유전자와 항생제 감수성 분석)

  • Kim, Se-Ri;Lee, Ji-Young;Lee, Seo-Hyun;Ryu, Kyoung-Yul;Park, Kyeong-Hun;Kim, Byung-Seok;Yoon, Yo-Han;Shim, Won-Bo;Kim, Kyoung-Yul;Ha, Sang-Do;Yun, Jong-Chul;Chung, Duck-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.134-141
    • /
    • 2011
  • Two-hundred Bacillus cereus isolated from perilla leaf cultivation areas in Miryang, Korea were investigated for toxin genes and antibiotic susceptibility. Toxigenic patterns of isolates were identified to be 11 groups through toxin gene profiles. 21% of strains isolated from the perilla leaves had both enterotoxin and emetic toxin. Toxin genes entFM (100%), nheA (100%) and hblA, C, D (65.5%) were frequently found in the perilla leaves, whereas EM (21.0%) was less common. Most isolates were susceptible to 10 antibiotics, but they were highly resistant to penicillin (100%), ampicillin (100%), oxacillin (94.9%), amoxicillin-clavulanic acid (95.6%), cefazolin (78.2%), and rifampicin (58.0%). These results indicate that food-borne outbreak caused by B. cereus might lead to diarrhea and emetic syndromes.

Analysis of Microbial Community Structure in Mine Tailings of Abandoned Mines Over the Depth Using Quinone Profiles (Quinone Profile법을 이용한 폐광산 광미내에 존재하는 깊이별 미생물 군집구조해석)

  • Lim, Byung-Ran;Kim, Myoung-Jin;Ahn, Kyu-Hong;Hwang, Hyun-Jung;Lee, Ki-Say
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.670-674
    • /
    • 2005
  • The respiratory quinone profile was used as a tool for the study on microbial community structure in the mine tailings of abandoned mines over the depth. For the study, the area of Jingok mine located in Bongwha, Korea has been selected. The distributions of Cd, Cu, Pb, Al, Fe and Mn showed the following common patterns; the highest values in the upper part of mine failings (0-20 cm), rapid decrease with increasing depth. The dominant quinone species of the mine tailings were UQ-9 followed by UQ-10, suggesting that microbes had contributed to heavy metal degradation. The quinone contents in mine tailings ranged from 5.0 to 24.9 nmol/kg. The microbial diversity in the upper part of mine tailings (0-40 cm) was higher than that of lower part of mine tailings (100-120 cm).

Supragingival Plaque Microbial Community Analysis of Children with Halitosis

  • Ren, Wen;Zhang, Qun;Liu, Xuenan;Zheng, Shuguo;Ma, Lili;Chen, Feng;Xu, Tao;Xu, Baohua
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2141-2147
    • /
    • 2016
  • As one of the most complex human-associated microbial habitats, the oral cavity harbors hundreds of bacteria. Halitosis is a prevalent oral condition that is typically caused by bacteria. The aim of this study was to analyze the microbial communities and predict functional profiles in supragingival plaque from healthy individuals and those with halitosis. Ten preschool children were enrolled in this study; five with halitosis and five without. Supragingival plaque was isolated from each participant and 16S rRNA gene pyrosequencing was used to identify the microbes present. Samples were primarily composed of Actinobacteria, Bacteroidetes, Proteobacteria, Firmicutes, Fusobacteria, and Candidate phylum TM7. The ${\alpha}$ and ${\beta}$ diversity indices did not differ between healthy and halitosis subjects. Fifteen operational taxonomic units (OTUs) were identified with significantly different relative abundances between healthy and halitosis plaques, and included the phylotypes of Prevotella sp., Leptotrichia sp., Actinomyces sp., Porphyromonas sp., Selenomonas sp., Selenomonas noxia, and Capnocytophaga ochracea. We suggest that these OTUs are candidate halitosis-associated pathogens. Functional profiles were predicted using PICRUSt, and nine level-3 KEGG Orthology groups were significantly different. Hub modules of co-occurrence networks implied that microbes in halitosis dental plaque were more highly conserved than microbes of healthy individuals' plaque. Collectively, our data provide a background for the oral microbiota associated with halitosis from supragingival plaque, and help explain the etiology of halitosis.

Response of Soil Microbial Communities to Applications of Green Manures in Paddy at an Early Rice-Growing Stage (녹비 시용이 초기 논 토양 미생물군집에 미치는 영향)

  • Kim, Eun-Seok;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.221-227
    • /
    • 2011
  • Applications of green manures generally improve the soil quality in rice paddy in part through restructuring of soil microbial communities. To determine how different green manures affect soil microbial communities during the early stages of rice growth, fatty acid methyl ester (FAME) profiles were used to the effects of different management practices: 1) conventional farming (CF), 2) no-treatment (NT), 3) Chinese milk vetch (CMV), 4) green barley (GB), and 5) triticale in paddy field. With applications of green manures, soil organic matter was significantly higher than CF, while soil Na concentration was significantly lower compared with CF (p<0.05). Total soil microbial biomass of CMV was higher (p<0.05) than NF by approximately 31%. The highest ratio of monounsaturated fatty acid to saturated fatty acid was found in the GB plot, followed by CMV and triticale compared with CF (p<0.05), possibly indicating that microbial stress was less in GB and CMV plots. Populations of Gram-negative bacteria and arbuscular mycorrhizal fungi also were significantly higher green manures than CF (p<0.05). Our findings suggest that GB should be considered as optimum green manure for enhancing soil microbial community at an early growing stage in paddy field.

Metagenomic Insight into Lignocellulose Degradation of the Thermophilic Microbial Consortium TMC7

  • Wang, Yi;Wang, Chen;Chen, Yonglun;Chen, Beibei;Guo, Peng;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1123-1133
    • /
    • 2021
  • Biodegradation is the key process involved in natural lignocellulose biotransformation and utilization. Microbial consortia represent promising candidates for applications in lignocellulose conversion strategies for biofuel production; however, cooperation among the enzymes and the labor division of microbes in the microbial consortia remains unclear. In this study, metagenomic analysis was performed to reveal the community structure and extremozyme systems of a lignocellulolytic microbial consortium, TMC7. The taxonomic affiliation of TMC7 metagenome included members of the genera Ruminiclostridium (42.85%), Thermoanaerobacterium (18.41%), Geobacillus (10.44%), unclassified_f__Bacillaceae (7.48%), Aeribacillus (2.65%), Symbiobacterium (2.47%), Desulfotomaculum (2.33%), Caldibacillus (1.56%), Clostridium (1.26%), and others (10.55%). The carbohydrate-active enzyme annotation revealed that TMC7 encoded a broad array of enzymes responsible for cellulose and hemicellulose degradation. Ten glycoside hydrolases (GHs) endoglucanase, 4 GHs exoglucanase, and 6 GHs β-glucosidase were identified for cellulose degradation; 6 GHs endo-β-1,4-xylanase, 9 GHs β-xylosidase, and 3 GHs β-mannanase were identified for degradation of the hemicellulose main chain; 6 GHs arabinofuranosidase, 2 GHs α-mannosidase, 11 GHs galactosidase, 3 GHs α-rhamnosidase, and 4 GHs α-fucosidase were identified as xylan debranching enzymes. Furthermore, by introducing a factor named as the contribution coefficient, we found that Ruminiclostridium and Thermoanaerobacterium may be the dominant contributors, whereas Symbiobacterium and Desulfotomaculum may serve as "sugar cheaters" in lignocellulose degradation by TMC7. Our findings provide mechanistic profiles of an array of enzymes that degrade complex lignocellulosic biomass in the microbial consortium TMC7 and provide a promising approach for studying the potential contribution of microbes in microbial consortia.

Effects of microencapsulated organic acids on growth performance, nutrient digestibility, fecal microbial counts, and blood profiles in weaning pigs

  • Lee, Jun Soeng;Kim, Tae Heon;Song, Min Ho;Oh, Han Jin;Yun, Won;Lee, Ji Hwan;Kim, Yong Ju;Lee, Byong Kon;Kim, Hyeun Bum;Cho, Jin Ho
    • Journal of Animal Science and Technology
    • /
    • v.63 no.1
    • /
    • pp.104-113
    • /
    • 2021
  • This study was conducted to investigate the efficiency of a microencapsulated mixture of organic acids (MOA) with low protein in piglet feed on growth performance, diarrhea score, nutrient digestibility, fecal microbial counts, and blood profiles in weaning pigs. A total of 80 pigs [(Landrace × Yorkshire) × Duroc; 6.8 ± 0.48 kg] were randomly assigned to four dietary treatment groups: high protein (HP); low protein (LP); MOA1, LP + 0.2% MOA; and MOA2, LP + 0.3% MOA. The MOA2 group had higher average daily weight gains (during days 0-14 and days 0-28), diarrhea score (during days 0-14, during days 14-28 and days 0-28) and greater digestibility of dry matter (days 14 and 28) compared to the LP group (p < 0.05). However, there were no significant differences (p > 0.05) between the pigs fed diets with the MOA1 and MOA2 in blood profiles and fecal microflora. In conclusion, this study indicates that piglets fed 0.3% MOA in low protein diets maintained similar growth performance and nutrient digestibility, but alleviated the incidence of diarrhea compared to piglets fed high protein diets.

김치유래 젖산균의 균체지방산 분석을 이용한 분류학적 연구

  • Lee, Jung-Sook;Jung, Min-Chul;Kim, Woo-Sik;Lee, Keun-Chul;Kim, Hong-Joong;Park, Chan-Sun;Lee, Hun-Joo;Joo, Yun-Jung;Lee, Kun-Jong;Ahn, Jong-Seog;Park, Wan;Park, Yong-Ha;Mheen, Tae-Ick
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.2
    • /
    • pp.234-241
    • /
    • 1996
  • Two hundreds and thirty lactic acid bacteria, mostly isolated from Kimchi, including type strains were used for analysis of cellular fatty acids. The 230 test strains were recoverd in 7 major and 1 single clusters defined at Euclidian distance of 17.5. These aggregate taxa were equivalent to the genus Leuconostoc (aggregate group A, B, C and D), the genus Lactobacillus (aggregate group F), the genera Lactobacillus and Pediococcus (aggregate group E) and the genera Leuconostoc and Lactobacillus (aggregate group G). It is concluded as evident that FAMEs (Fatty Acid Methyl Esters) profile of cell can be used as a criterion in classification of lactic acid bacteria from kimchi. Additional comparative taxonomic studies need to be carried out on well chosen representative strains to determine the most appropriate methods of value.

  • PDF

Improvement of PCR Amplification Bias for Community Structure Analysis of Soil Bacteria by Denaturing Gradient Gel Electrophoresis

  • Ahn, Jae-Hyung;Kim, Min-Cheol;Shin, Hye-Chul;Choi, Min-Kyeong;Yoon, Sang-Seek;Kim, Tae-Sung;Song, Hong-Gyu;Lee, Geon-Hyoung;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1561-1569
    • /
    • 2006
  • Denaturing gradient gel electrophoresis (DGGE) is one of the most frequently used methods for analysis of soil microbial community structure. Unbiased PCR amplification of target DNA templates is crucial for efficient detection of multiple microbial populations mixed in soil. In this study, DGGE profiles were compared using different pairs of primers targeting different hypervariable regions of thirteen representative soil bacteria and clones. The primer set (1070f-1392r) for the E. coli numbering 1,071-1,391 region could not resolve all the 16S rDNA fragments of the representative bacteria and clones, and moreover, yielded spurious bands in DGGE profiles. For the E. coli numbering 353-514 region, various forward primers were designed to investigate the efficiency of PCR amplification. A degenerate forward primer (F357IW) often yielded multiple bands for a certain single 16S rDNA fragment in DGGE analysis, whereas nondegenerate primers (338f, F338T2, F338I2) differentially amplified each of the fragments in the mixture according to the position and the number of primer-template mismatches. A forward primer (F352T) designed to have one internal mismatch commonly with all the thirteen 16S rDNA fragments efficiently produced and separated all the target DNA bands with similar intensities in the DGGE profiles. This primer set F352T-519r consistently yielded the best DGGE banding profiles when tested with various soil samples. Touchdown PCR intensified the uneven amplification, and lowering the annealing temperature had no significant effect on the DGGE profiles. These results showed that PCR amplification bias could be much improved by properly designing primers for use in fingerprinting soil bacterial communities with the DGGE technique.

Determination of Microbial Diversity in Gouda Cheese via Pyrosequencing Analysis

  • Oh, Sangnam;Kim, Younghoon
    • Journal of Dairy Science and Biotechnology
    • /
    • v.36 no.2
    • /
    • pp.125-131
    • /
    • 2018
  • The present study aimed to investigate the microbial diversity in Gouda cheese within the four months of ripening, via next-generation sequencing (NGS). Lactococcus (96.03%), and Leuconostoc (3.83%), used as starter cultures, constituted the majority of bacteria upon 454 pyrosequencing based on 16S rDNA sequences. However, no drastic differences were observed among other populations between the center and the surface portions of Gouda cheese during ripening. Although the proportion of subdominant species was <1%, slight differences in bacterial populations were observed in both the center and the surface portions. Taken together, our results suggest that environmental and processing variables of cheese manufacturing including pasteurization, starter, ripening conditions are important factors influencing the bacterial diversity in cheese and they can be used to alter nutrient profiles and metabolism and the flavor during ripening.

Effect of Disodium Fumarate on In vitro Rumen Fermentation of Different Substrates and Rumen Bacterial Communities as Revealed by Denaturing Gradient Gel Electrophoresis Analysis of 16S Ribosomal DNA

  • Mao, S.Y.;Zhang, G.;Zhu, W.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.4
    • /
    • pp.543-549
    • /
    • 2007
  • Two experiments were conducted to investigate the effects of disodium fumarate on the in vitro rumen fermentation profiles of different substrates and microbial communities. In experiment 1, nine diets (high-forage diet (forage:concentrate, e.g. F:C = 7:3, DM basis), medium-forage diet (F:C = 5:5, DM basis), low-forage diet(F:C = 1:9, DM basis), cracked corn, cracked wheat, soluble starch, tall elata (Festuca elata), perennial ryegrass and rice straw) were fermented in vitro by rumen microorganisms from local goats. The results showed that during 24 h incubations, for all substrates, disodium fumarate increased (p<0.05) the gas production, and tended to increase (p<0.10) the acetate, propionate and total VFA concentration and decrease the ratio of acetate to propionate, whereas no treatment effect was observed for the lactate concentration. The apparent DM loss for tall elata, perennial ryegrass and rice straw increased (p<0.05) with the addition of disodium fumarate. With the exception of tall elata, perennial ryegrass and rice straw, disodium fumarate addition increased the final pH (p<0.05) for all substrates. In experiment 2, three substrates (a high-forage diet, a medium-forage diet and a high concentrate diet) were fermented by mixed rumen microbes in vitro. A polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique was applied to compare microbial DNA fingerprints between substrates at the end of 24 h incubation. The results showed that when Festuca elata was used as substrate, the control and disodium fumarate treatments had similar DGGE profiles, with their similarities higher than 96%. As the ratio of concentrate increased, however, the similarities in DGGE profiles decreased between the control and disodium fumarate treatment. Overall, these results suggest that disodium fumarate is effective in increasing the pH and gas production for the diets differing in forage: concentrate ratio, grain cereals and soluble starch, and in increasing dry matter loss for the forages (tall elata, perennial ryegrass and rice straw) in vitro, whereas its effect on changes of ruminal microbial community may largely depend on the general nature of the substrate.