• Title/Summary/Keyword: microbial populations

Search Result 366, Processing Time 0.034 seconds

Microbiological Quality and Growth and Survival of Foodborne Pathogens in Ready-To-Eat Egg Products (즉석섭취 알 가공품의 미생물학적 품질 및 주요 식중독 균의 증식·생존 분석)

  • Jo, Hye Jin;Choi, Beom Geun;Wu, Yan;Moon, Jin San;Kim, Young Jo;Yoon, Ki Sun
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.2
    • /
    • pp.178-188
    • /
    • 2015
  • Microbial quality of baked egg products was evaluated by counting the levels of sanitary indicative bacteria (aerobic plate counts, coliforms, and E. coli), L. monocytogenes and Salmonella spp. at the critical control points (CCPs) of manufacturing process. In addition, the survival and growth of foodborne pathogens in various egg products (cheese, tuna, tteokgalbi, pizza omelets, baked egg, and steamed egg) were investigated at 4, 10, and $15^{\circ}C$. The contamination level of aerobic plate counts decreased from 4.67 log CFU/g at CCP 1 to 0.56 log CFU/g at CCP 3 in baked egg products. No coliforms and E. coli were detected at all CCPs. Although L. innocua and Salmonella spp. were identified at CCP 1, no L. monocytogenes and Salmonella spp. were detected in the final products. The contamination levels of aerobic plate counts and coliforms in egg strips and number of aerobic plate counts in Tteokgalbi omelet are higher than the microbiological standard of processed egg products. At $10^{\circ}C$, the growth of all pathogens was not prevented in omelet and baked egg, but the populations of S. Typhimurium and E. coli were reduced in steamed egg at $10^{\circ}C$, regardless of the presence of other pathogens. The growth of L. monocytogenes was faster than that of S. Typhimurium and E. coli in omelet. More rapid growth of S. Enteritidis than S. Typhimurium was observed in egg products, indicating the greater risk of S. Enteritidis than S. Typhimurium in egg products.

Quality and shelf life of sliced root of Platycodon grandiflorum treated by ozon-microbubble-heat shock (오존-마이크로버블-열수 처리한 세절 도라지의 품질 및 저장성)

  • Park, Kyung Min;Lee, Ji Young;Min, So-Ra;Jeong, Moon-Cheol;Koo, Minseon
    • Food Science and Preservation
    • /
    • v.23 no.5
    • /
    • pp.605-613
    • /
    • 2016
  • The quality and shelf life of sliced root of Platycodon grandiflorum (Doraji) treated by ozon-microbubble-heat shock (OMH) were investigated by combining modified-atmosphere packaging [MAP, ($50%O_2+15%CO_2+35%N_2$)]. The study was based on microbiological (total viable bacteria, fungi, Enterobacteriaceae and coliforms numbers), physicochemical and sensory changes. OMH treatment was effective in reducing microbial populations of the sliced Doraji, especially Enterobacteriaceae and coliforms reduced by 2 log CFU/g. However OMH-MAP treatment remained the aerobe and fungi numbers. Regarding the color, OMH-MAP delayed the change of Hunter $b^*$ and the sliced Doraji by OMH-MAP treatment exhibited lower decrease of flavor and overall acceptability compared to those by polypropylene packaging after tap water treatment (Control). The OMH and $50%O_2+15%CO_2$ MAP treatment gave better sensory quality and extended shelf-life for sliced Doraji (~3 days longer shelf-life than Control). Flavor was significantly related to overall acceptability at both Control and OMH-MAP, whereas total coliforms prevalence was associated with overall acceptability at only OMH-MAP. Therefore microbubble-heat shock treatment may improve microbial safety and sliced Doraji by OMH treatment can stored under $50%O_2+15%CO_2$ treatment for up to 7 days. Thus, OMH and MAP treatment may be used in maintaining the storage quality and marketability of sliced Doraji.

Quality characteristics of commercial liquid type yogurt in Korea (국내 시판 액상요구르트의 품질특성)

  • Lee, Ji Hyun;Park, Hye Young;Won, Ju In;Park, Hye In;Choi, In Duck;Lee, Seuk Ki;Park, Ji Young;Joe, Dong Hwa;Jeon, Yong Hee;Oh, Sea Kwan;Han, Sang Ik;Choi, Hye Sun
    • Food Science and Preservation
    • /
    • v.24 no.6
    • /
    • pp.865-870
    • /
    • 2017
  • Yogurt is produced by fermentation of milk using bacteria known as "yogurt cultures". Most of these bacteria are probiotics such as Lactobacillus delbrueckii subsp. bulgaricus, Lb. rhamnosus, Streptococcus thermophilus, and Bifidobacterium. The domestic fermented milk market is increasing, and about 30 companies are producing yogurt. The purpose of this study was to analyze the quality characteristics of domestic commercial liquid yogurt. Total 30types of commercial yogurts were sampled and their physicochemicial properties, including pH, sugar content, acidity, viscosity, and microbial characteristics of lactic acid bacteria counts, were measured. Commercial liquid type yogurt showed a pH of 4.5, sugar content of 7.4-21.2%, total acid content of 0.4-0.9%, and viscosity of 0.1-250 cP. In terms of microbial populations, lactic acid bacteria counts were 7.2-11.3 log CFU/mL and anaerobic lactic acid bacteria counts were 8.0-11.5 log CFU/mL. The quality characteristics differed depending on the constituents of the sample and the microorganisms used. These results are related to the quality characteristics of yogurts and are useful for identifying new trends in the domestic fermented milk industry.

Screening of Brewing Yeasts and Saccharifying Molds for Foxtail Millet-Wine Making (제주민속 좁쌀약주 발효를 위한 우수균주의 선발)

  • Kim, Ji-Yong;Koh, Jeong-Sam
    • Applied Biological Chemistry
    • /
    • v.47 no.1
    • /
    • pp.78-84
    • /
    • 2004
  • In order Nuruk to improve the quality of millet wine, a traditional Jeju cereal wine, yeasts and molds were isolated from 35 kinds of Nuruk collected nationwide. Isolated strains were screened for saccharification of starch and brewing of millet wine. Fermentation characteristics of millet wine with different types of Nuruk were also investigated. The average number of microbial populations in the Nuruk were $6.4{\times}10^5{\sim}4.5{\times}10^7\;cfu/g$ for molds and $1.4{\times}10^4{\sim}7.7{\times}10^7\;cfu/g$ for yeasts. Among the 169 strains of molds and 103 strains of yeasts, 16 strains were screened for saccharifying activity on starch as a substrate, and one yeast strain was screened for the brewing of millet wine. A8-3, supposed as Aspergillus sp., showed the highest enzyme activities of glucdamylase, ${\alpha}-amylase$ and xylanase while B23-3 strain, supposed as Rhizopus sp., showed the highest saccharifying activity. A10-4, supposed as Saccharomyces sp., showed the highest level of weight loss from $CO_2$ evolution, sugar and alcohol tolerance during fermentation. When the Nuruk was made after inoculation with the selected strains, saccharifying activity was higher for the co-cultivation of A8-3 and B23-3 than individual cultivation of each strain. Similar saccharifying activities were shown in both disc-type and pellet-type Nuruk. It was suggested that pellet-type Nuruk could improve fermentation yield. The collected Nuruk consisted of $10{\sim}13%$ moisture, $55{\sim}70%$ total sugar, $10{\sim}18%$ crude protein, $0.2{\sim}1.0%$ crude fat and $1.8{\sim}2.1%$ ash. The Nuruk made in this study was composed of $12{\sim}15%$ moisture, $61{\sim}71%$ total sugar, $15{\sim}20%$ crude protein, $0.4{\sim}1.5%$ crude fat and $1.1{\sim}1.5%$ ash.

Effect of Preparation method and Fermentation Conditions on Microbiological Characteristics of Sikhae (어류를 이용한 식해의 제조 방법에 따른 미생물의 특성변화)

  • Kim, Young-Sook;Oh, Seung-Hee;Kim, Soon-Dong
    • Food Science and Preservation
    • /
    • v.15 no.6
    • /
    • pp.909-914
    • /
    • 2008
  • This study investigated microbial populations and the sensory quality of sikhae including globefish (GLS), flounder (FLS), gastropods (GAS) and whelks (WHS) during storage at 4C for 16 d following fermentation at 10C for 4 d. General bacterial numbers increased to 102 in GLS and FLS, and to 1045 in WHS and GAS after the 20 d fermentation/storage period. Lactic acid bacteria increased to 108 log cycle in GLS and FLS after 10 d ripening time, and reached this level in GAS and WHS after 15 d and 20 d, respectively. After 20 days the number of lactic acid bacteria in each of the four samples was 108. There were 104105 yeast cells/g in each of the four samples after 20 d. The number of Leuconostoc increased to over 108 log cycle after 10 d in GLS and FLS, and 15 days in GAS for WHS the increase was to 107 log cycle. The pH values of GLS, FLS, GAS and WHS 4.42, 4.56, 4.31 and pH 4.26, respectively. The Sikhae acidity for all four samples ranged from 1.551.85%. From the sensory evaluation the overall acceptability was in the order of FLS > GLS > GAS > WHS.

Effect of the Concentration of Humic Acid on Growth and Yield of Organically Cultivated Hot-Pepper (휴믹산 농도가 유기농 고추의 생육 및 수량에 미치는 영향)

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Park, Jong-Ho;Han, Eun-Jung;Ko, Byong-Gu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.67-78
    • /
    • 2017
  • The purpose of this study was to investigate the effect of humic acid on the germination, the growth and the yield of hot pepper when treated with organic hot pepper seedlings and growing season. The germination rate of 0.05% and 0.1% humic acid was higher than that of untreated, but the germination rates of 0.4% and 1.0% humic acid were 90.0% and 86.7%, respectively, compared with the control treatment (96.7%). At 30 days after transplanting, hot pepper treated with low (0.05%) or high (1.0%) concentration of humic acid decreased the growth of hot pepper seedlings, whereas 0.2% humic acid treatment significantly increased a average height (97.6 cm), leaf number (84.7) and fresh weight ($128.1g\;plant^{-1}$) of hot pepper. After 60 days of treatment with humic acid, the height of hot pepper was significantly longer in 0.2% humic acid. The mean green fruit number of 0.2%, 0.1% and 0.05% humic acid were not significantly different among the treatments, but the mean green pepper number of 0.4% and 1.0% humic acid treatments were the higher with 35.2% and 29.1%, respectively than other treatments. However, the fresh weight of green pepper was found to be $111.5g\;plant^{-1}$ more heavier than the untreated in 0.2% humic acid. The total ($5.8kg\;plant^{-1}$) and average ($1.4kg\;plant^{-1}$) fresh weight of pepper were higher than that of untreated control, except for the 1.0% humic acid treatment after 60 days of soil irrigation. The total weight of hot pepper treated with 0.2% and 0.1% humic acid treatment was $9.3kg\;plant^{-1}$ and $8.6kg\;plant^{-1}$, respectively, which were heavier than the other treatments. The effect of humic acid concentrations on soil microbial populations, pH and EC was investigated. The soil bacterial population density of 0.2% humic acid treatment was 3.5 times higher than that of untreated control soil. As the concentration of humic acid increased from 0.05% to 1.0%, pH and EC of hot pepper grown soil also increased.

Changes in Physicochemical Properties and Microbial Population during Fermenting Process of Organic Fertilizer (혼합발효 유기질비료의 발효과정 중 이화학성 및 미생물밀도 변화)

  • Lee, Jong-Tae;Lee, Chan-Jung;Kim, Hee-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.2
    • /
    • pp.116-123
    • /
    • 2004
  • This study was conducted to investigate the changes in physicochemical and microbiological properties during fermenting process of organic fertilizer which was made from the mixture of organic materials such as sesame oil cake, fish meal, blood meal, rice bran, ground bone meal, and natural minerals such as illite, crusted oyster shell and loess. They were mixed and fermented for 70 days. The sesame oil cake and rice bran, major ingredients for organic fertilizers, consisted of 7.6 and 2.6% total nitrogen, 3.6 and 4.6% $P_2O_5$, 1.4 and 2.2% $K_2O$, respectively. The ground bone meal included 29.2% $P_2O_5$ and illite included 3.8% $K_2O$. Temperature of organic fertilizer during the fermentation rapidly increased over $50^{\circ}C$ within 2 days after mixing and stabilized similar to outdoor temperature after 40 days. Moisture content decreased from 36.3 to 16.0% after 1 month. C/N ratio of organic fertilizer slightly increased until 30 days and thereafter, it slowly decreased, It resulted from the faster decrease of total nitrogen concentration compared with organic matter. Concentration of $NH_4-N$ in organic fertilizer rapidly increased from 1,504 to $5,530mg\;kg^{-1}$, the highest concentration after 10 days. Meantime, $NO_3-N$ concentration was low and constant about $150mg\;kg^{-1}$ over the whole fermenting period. This result seemed to be due to the high pH. The organic ferfilizer fermented for 70 days was composed of 2.7% N, 2.8% $P_2O_5$, 1.8% $K_2O$, and 35.9% organic matter. Total populations of aerobic bacteria, Bacillus sp. and actinomycetes, after fermenting process, were $12.5{\times}10^{10}$, $45.5{\times}10^{5}$ and $13.6{\times}10^{5}cfu\;g^{-1}$ respectively. Pseudomonas sp. was $71.9{\times}10^{7}cfu\;g^{-1}$ at first, but it rapidly decreased according to the rise of temperature. Yeasts played an important role in the early stage of fermentation and molds did in the late stage.

Effect of Electrolyzed Water and Citric acid On Quality Enhancement and Microbial Inhibition in Head Lettuce (전해수와 구연산을 이용한 양상치의 품질 향상 및 미생물 저감화 효과)

  • Jin, Yong-Guo;Kim, Tae-Woong;Ding, Tian;Oh, Deog-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.578-586
    • /
    • 2009
  • This study was conducted to determine the effects of alkaline electrolyzed water (AIEW), acidic electrolyzed water (AcEW), 1% citric acid, and 100 ppm sodium hypochlorite, either alone or in combination with citric acid, in reducing the populations of spoilage bacteria and foodborne pathogens (Listeria monocytogenes and Escherichia coli O157:H7) on lettuce at various exposure times (3, 5, and 10 min) with different dipping temperatures (1, 20, 40, and $50^{\circ}C$). In addition, the inhibitory effect of alkaline electrolyzed water combined with citric acid on the browning reaction during storage at $4^{\circ}C$ for 15 days was investigated. Compared to the untreated control, electrolyzed water more effectively reduced the number of total bacteria, mold, and yeast than 100 ppm sodium hypochlorite under the same treatment conditions. All treatments exposed for 5 min significantly reduced the numbers of total bacteria, yeast, and mold on head lettuce. The inactivation effect of each treatment on head lettuce was enhanced as the dipping temperature increased from 1 to $50^{\circ}C$, but there was no significantly difference at temperatures greater than $40^{\circ}C$ (p<0.05). The total counts of yeast and mold in head lettuce were completely eliminated when a combination of 1% citric acid and AlEW treatment was used at temperatures greater than $40^{\circ}C$. However, decreased reduction in L. monocytogenes (2.81 log CFU/g), and E. coli O157:H7 (2.93 log CFU/g) on head lettuce was observed under these treatment conditions. In addition, enhanced anti-browning effect was observed when the samples were subjected to both 1% citric acid and AlEW treatment at temperatures greater than $40^{\circ}C$ compared to when single treatments alone were used. Thus, this combined treatment might be considered a potentially beneficial sanitizing method for improving the quality and safety of head lettuce.

Quality Characteristics of Takju Fermentation by Addition of Chestnut Peel Powder (율피가루를 첨가한 탁주의 품질 특성)

  • Jeong Jin-Woong;Park Kee-Jai;Kim Myung-Ho;Kim Dong-Soo
    • Food Science and Preservation
    • /
    • v.13 no.3
    • /
    • pp.329-336
    • /
    • 2006
  • The characteristics of mash qualities of takju prepared by addition of chestnut peel powder(5%, 10%, 20% and 30% per steamed rice) were investigated during fermentation. That is, in all fermentation periods, changes of pit total acid, organic acids, solids, amino nitrogen, total sugar and reducing sugar, microorganisms, alcohol and color were determined and analyzed. There was significant differences in characteristics of mash qualities by addition of chestnut peel powder. In general, contents of total acid, organic acids, amino nitrogen, total sugar, reducing sugar and ethanol of takju added with chestnut peel powder were lower than those of steamed rice only, whereas solid contents was higher. But ethanol content of takju added with 5% of chestnut peel powder after 8 days of fermentation was 9.6% which was similar to that of takju prepared by addition of steamed lice only. Also, microbial populations such as total viable cells, yeast and lactic acid bacteria of the treatments were increased to about $10^8CFU/mL$ after 2 days of fermentation and then decreased gradually. In the beginning stage of fermentation color differences value of the treatments were $1.99{\sim}10.27$, and the differentials reduced gradually during fermentation.

Induction of Apoptosis by Ethanol Extract of Lythrum anceps (Koehne) Makino in Human Leukemia U937 Cells (인체백혈병 U937 세포에서 부처꽃 에탄올추출물에 의한 apoptosis 유도)

  • Jeong, Jin-Woo;Kim, Chul Hwan;Lee, Young-Kyung;Hwang, Yong;Lee, Ki Won;Choi, Kyung-Min;Kim, Jung Il
    • Korean Journal of Plant Resources
    • /
    • v.33 no.4
    • /
    • pp.279-286
    • /
    • 2020
  • Purple loosestrife-Lythrum anceps (Koehne) Makino is a herbaceous perennial plant belonging to the Lythraceae family. It has been used for centuries in Korea and other Asian traditional medicine. It has been showed pharmacological effects, including anti-oxidant and anti-microbial effects. However, the mechanisms underlying its anti-cancer effect are not yet understood. In this study, we investigated the mechanism of apoptosis signaling pathways by ethanol extract of Lythrum anceps (Koehne) Makino (ELM) in human leukemia U937 cells. Treatment with ELM significantly inhibited cell growth in a dose-dependent manner by inducing apoptosis, as evidenced by the formation of apoptotic bodies (ApoBDs), DNA fragmentation and increased populations of sub-G1 ratio. Induction of apoptosis by ELM was connected with up-regulation of death receptor (DR) 4 and DR5, pro-apoptotic Bax protein expression and down-regulation of anti-apoptotic Bcl-2 protein, and inhibitor of apoptosis protein (IAP) family proteins, depending on dosage. This induction was associated with Bid truncation, mitochondrial dysfunction, proteolytic activation of caspases (-3, -8 and -9) and cleavage of poly(ADP-ribose) polymerase protein. Therefore, our data indicate that ELM suppresses U937 cell growth by activating the intrinsic and extrinsic apoptosis pathways, and thus may have applications as a potential source for an anti-leukemic chemotherapeutic agent.