• Title/Summary/Keyword: microbial populations

Search Result 366, Processing Time 0.035 seconds

Effects of ${\gamma}-Irradiation$ on the Quality of Seasoned Cuttle during Storage (감마선 조사가 조미오징어의 저장 중 품질특성에 미치는 영향)

  • Noh, Jung-Eun;Kim, Byeong-Keun;Kim, Hyun-Ku;Kwon, Joong-Ho
    • Journal of the Korean Society of Food Culture
    • /
    • v.19 no.5
    • /
    • pp.516-523
    • /
    • 2004
  • This study was conducted to investigate the changes in the qualify of gamma-irradiated seasoned cuttle during storage. Seasoned cuttle packed in PVC film (0.06 win) was stored at $15{\pm}1^{\circ}C$ for 6 months after treatment with doses of 0 to 7 kGy. Microbial populations of seasoned cuttle were $1.6{\times}10^{5}CFU/g$ in total aerobic bacteria, $10^{4}{\sim}10^{5}CFU/g$ in yeasts &molds, and negative in coliforms, which were effectively reduced by 3 kCy or higher up to the undetectable level(<20 CFU/g). The pH and moisture content of the samples were not changed with irradiation, but moisture was some decreased during storage. The instrumental color (especially Hunter b value), pigments (lipophilic &hydrophilic) and TBA value of the samples increased with storage time as well as irradiation dose more than 3 kGy. The influence of storage condition, however, were more significant. Irradiation did not induce any changes in volatile basic nitrogen (VBN) and trimethylamine (TMA) contents, thereby maintaining their contents lower than those of the non-irradiated samples during storage by reducing the microbial load.

Isolation and Identification of Spoilage Bacteria on Organic and Conventional Fresh Produce in Korea (국내에 시판되고 있는 유기농산물과 일반농산물의 부패미생물 분리 및 동정)

  • Jung, Soon-Young;Zheng, Ling;Jung, Kyu-Seok;Heu, Sunggi;Lee, Sun-Young
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.4
    • /
    • pp.306-311
    • /
    • 2013
  • This study was conducted to investigate spoilage bacteria on organic and conventional fresh produce in Korea. Three samples (perilla leaf, cabbage, and romaine lettuce) of organic and conventional fresh produce were stored at $4^{\circ}C$ for 14 days and examined for spoilage bacteria on TSA. Isolated bacteria from organic and conventional fresh produces were identified using 16S rRNA sequencing method. Population of total aerobic bacteria on conventional perilla leaf, cabbage, and romaine lettuce were 7.59, 7.01, and $5.84{\log}_{10}CFU/g$, and populations of total aerobic bacteria were 6.72, 6.15, and $5.85{\log}_{10}CFU/g$, for organic perilla leaf, cabbage, and romaine lettuce, respectively. Major spoilage bacteria of organic and conventional fresh produces were similar however their levels were little different. For example, a major spoilage bacterium resulting the highest level on conventional perilla leaf was Stenotrophomonas maltophilia whereas that was Microbacterium sp. for organic produce. From these results, microflora or spoilage microorganism could be different depending on their cultivation types as conventional or organic produces and this information might be used for developing effective preservation method for different types of fresh produce.

A PCR Denaturing Gradient Gel Electrophoresis (DGGE) Analysis of Intestinal Microbiota in Gastric Cancer Patients Taking Anticancer Agents (PCR-DGGE를 통해 분석한 항암치료에 따른 장내 미생물 변화)

  • Yu, Sun Nyoung;Ahn, Soon Cheol
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1290-1298
    • /
    • 2017
  • Intestinal microbiota is an important factor in the development of immune defense mechanisms in the human body. Treatments with anticancer agents, such as 5-Fluorouracil, Cisplatin, and Oxaliplatin, significantly change the temporal stability and environment of intestinal bacterial flora. The anticancer treatment chemotherapy often depresses the immune system and induces side effects, such as diarrhea. This study investigated the effects anticancer agents have on the intestinal microbial ecosystems of patients with gastric cancer. An exploration of the diversity and temporal stability of the dominant bacteria was undertaken using a DGGE with the 16S rDNA gene. Researchers collected stool samples from patients zero, two and eight weeks after the patients started chemotherapy. After the treatment with anticancer agents, the bacteria strains Sphingomonas paucimobilis, Lactobacillus gasseri, Parabacteroides distasonis and Enterobacter sp. increased. This study focused on the survival of the beneficial microorganisms Bifidobacterium and Lactobacillus in the intestines of cancer patients. The administration of antigastric cancer agents significantly decreased Lactobacillus and Bifidobacterium populations and only moderately affected the main bacterial groups in the patients' intestinal ecosystems. The results showed the versatility of a cultivation independent-PCR DGGE analysis regarding the visual monitoring of ecological diversity and anticancer agent-induced changes in patients' complex intestinal microbial ecosystems.

Combined Effects of Sanitizer Mixture and Antimicrobial Ice for Improving Microbial Quality of Salted Chinese Cabbage during Low Temperature Storage (저온 저장 중 절임배추의 미생물학적 품질 향상을 위한 혼합 살균제재와 항균성 얼음 병합처리 효과)

  • Choi, Eun Ji;Chung, Young Bae;Han, Ae Ri;Chun, Ho Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.11
    • /
    • pp.1715-1724
    • /
    • 2015
  • The combined effects of a sanitizer mixture solution and antimicrobial ice on the quality of salted Chinese cabbages were examined. Salted Chinese cabbages were treated with a sanitizer mixture (comprised 50 ppm aqueous $ClO_2$ and 0.5% citric acid), packed in 2% brine and antimicrobial ice, and stored for 12 days at 4 and $10^{\circ}C$. Microbiological data on the salted Chinese cabbages after washing with the sanitizer mixture indicated that the populations of total aerobic bacteria, and yeast and molds decreased by 2.20 and 1.28 log CFU/g after treatment with the sanitizer mixture. In addition, coliforms population of salted Chinese cabbage after 12 days storage at $4^{\circ}C$ in the combined mixture of the sanitizer and antimicrobial ice was 3.22 log CFU/g, which was a significantly different from that of control (5.46 log CFU/g). The combined treatment of sanitizer mixture, antimicrobial ice, and low temperature at $4^{\circ}C$ suppressed reduction of pH and elevation of titratable acidity, resulting in delaying the growth of lactic acid bacteria. Differences in salinity, hardness, and Hunter's $L^*$, $a^*$, and $b^*$ values among treatments were negligible during storage at $4^{\circ}C$. Therefore, this study suggests that a combination of sanitizer mixture, antimicrobial ice treatment, and low temperature storage could improve the microbial safety and quality of salted Chinese cabbages during storage.

Improvement of PCR Amplification Bias for Community Structure Analysis of Soil Bacteria by Denaturing Gradient Gel Electrophoresis

  • Ahn, Jae-Hyung;Kim, Min-Cheol;Shin, Hye-Chul;Choi, Min-Kyeong;Yoon, Sang-Seek;Kim, Tae-Sung;Song, Hong-Gyu;Lee, Geon-Hyoung;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1561-1569
    • /
    • 2006
  • Denaturing gradient gel electrophoresis (DGGE) is one of the most frequently used methods for analysis of soil microbial community structure. Unbiased PCR amplification of target DNA templates is crucial for efficient detection of multiple microbial populations mixed in soil. In this study, DGGE profiles were compared using different pairs of primers targeting different hypervariable regions of thirteen representative soil bacteria and clones. The primer set (1070f-1392r) for the E. coli numbering 1,071-1,391 region could not resolve all the 16S rDNA fragments of the representative bacteria and clones, and moreover, yielded spurious bands in DGGE profiles. For the E. coli numbering 353-514 region, various forward primers were designed to investigate the efficiency of PCR amplification. A degenerate forward primer (F357IW) often yielded multiple bands for a certain single 16S rDNA fragment in DGGE analysis, whereas nondegenerate primers (338f, F338T2, F338I2) differentially amplified each of the fragments in the mixture according to the position and the number of primer-template mismatches. A forward primer (F352T) designed to have one internal mismatch commonly with all the thirteen 16S rDNA fragments efficiently produced and separated all the target DNA bands with similar intensities in the DGGE profiles. This primer set F352T-519r consistently yielded the best DGGE banding profiles when tested with various soil samples. Touchdown PCR intensified the uneven amplification, and lowering the annealing temperature had no significant effect on the DGGE profiles. These results showed that PCR amplification bias could be much improved by properly designing primers for use in fingerprinting soil bacterial communities with the DGGE technique.

Molecular and Ecological Analyses of Microbial Community Structures in Biofilms of a Full-Scale Aerated Up-Flow Biobead Process

  • Ju, Dong-Hun;Choi, Min-Kyung;Ahn, Jae-Hyung;Kim, Mi-Hwa;Cho, Jae-Chang;Kim, Tae-Sung;Kim, Tae-San;Seong, Chi-Nam;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.253-261
    • /
    • 2007
  • Molecular and cultivation techniques were used to characterize the bacterial communities of biobead reactor biofilms in a sewage treatment plant to which an Aerated Up-Flow Biobead process was applied. With this biobead process, the monthly average values of various chemical parameters in the effluent were generally kept under the regulation limits of the effluent quality of the sewage treatment plant during the operation period. Most probable number (MPN) analysis revealed that the population of denitrifying bacteria was abundant in the biobead #1 reactor, denitrifying and nitrifying bacteria coexisted in the biobead #2 reactor, and nitrifying bacteria prevailed over denitrifying bacteria in the biobead #3 reactor. The results of the MPN test suggested that the biobead #2 reactor was a transition zone leading to acclimated nitrifying biofilms in the biobead #3 reactor. Phylogenetic analysis of 16S rDNA sequences cloned from biofilms showed that the biobead #1 reactor, which received a high organic loading rate, had much diverse microorganisms, whereas the biobead #2 and #3 reactors were dominated by the members of Proteobacteria. DGGE analysis with the ammonia monooxygenase (amoA) gene supported the observation from the MPN test that the biofilms of September were fully developed and specialized for nitrification in the biobead reactor #3. All of the DNA sequences of the amoA DGGE bands were very similar to the sequence of the amoA gene of Nitrosomonas species, the presence of which is typical in the biological aerated filters. The results of this study showed that organic and inorganic nutrients were efficiently removed by both denitrifying microbial populations in the anaerobic tank and heterotrophic and nitrifying bacterial biofilms well-formed in the three functional biobead reactors in the Aerated Up-Flow Biobead process.

Effect of storage time and the level of formic acid on fermentation characteristics, epiphytic microflora, carbohydrate components and in vitro digestibility of rice straw silage

  • Zhao, Jie;Wang, Siran;Dong, Zhihao;Li, Junfeng;Jia, Yushan;Shao, Tao
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.1038-1048
    • /
    • 2021
  • Objective: The study aimed to evaluate the effect of storage time and formic acid (FA) on fermentation characteristics, epiphytic microflora, carbohydrate components and in vitro digestibility of rice straw silage. Methods: Fresh rice straw was ensiled with four levels of FA (0%, 0.2%, 0.4%, and 0.6% of fresh weight) for 3, 6, 9, 15, 30, and 60 d. At each time point, the silos were opened and sampled for chemical and microbial analyses. Meanwhile, the fresh and 60-d ensiled rice straw were further subjected to in vitro analyses. Results: The results showed that 0.2% and 0.6% FA both produced well-preserved silages with low pH value and undetected butyric acid, whereas it was converse for 0.4% FA. The populations of enterobacteria, yeasts, moulds and aerobic bacteria were suppressed by 0.2% and 0.6% FA, resulting in lower dry matter loss, ammonia nitrogen and ethanol content (p<0.05). The increase of FA linearly (p<0.001) decreased neutral detergent fibre and hemicellulose, linearly (p<0.001) increased residual water soluble carbohydrate, glucose, fructose and xylose. The in vitro gas production of rice straw was decreased by ensilage but the initial gas production rate was increased, and further improved by FA application (p<0.05). No obvious difference of FA application on in vitro digestibility of dry matter, neutral detergent fibre, and acid detergent fibre was observed (p>0.05). Conclusion: The 0.2% FA application level promoted lactic acid fermentation while 0.6% FA restricted all microbial fermentation of rice straw silages. Rice straw ensiled with 0.2% FA or 0.6% FA improved its nutrient preservation without affecting digestion, with the 0.6% FA level best.

Effects on microbial diversity of fermentation temperature (10℃ and 20℃), long-term storage at 5℃, and subsequent warming of corn silage

  • Zhou, Yiqin;Drouin, Pascal;Lafreniere, Carole
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.10
    • /
    • pp.1528-1539
    • /
    • 2019
  • Objective: To evaluate the effects on microbial diversity and biochemical parameters of gradually increasing temperatures, from $5^{\circ}C$ to $25^{\circ}C$ on corn silage which was previously fermented at ambient or low temperature. Methods: Whole-plant corn silage was fermented in vacuum bag mini-silos at either $10^{\circ}C$ or $20^{\circ}C$ for two months and stored at $5^{\circ}C$ for two months. The mini-silos were then subjected to additional incubation from $5^{\circ}C$ to $25^{\circ}C$ in $5^{\circ}C$ increments. Bacterial and fungal diversity was assessed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiling and biochemical analysis from mini-silos collected at each temperature. Results: A temperature of $10^{\circ}C$ during fermentation restricted silage fermentation compared to fermentation temperature of $20^{\circ}C$. As storage temperature increased from $5^{\circ}C$ to $25^{\circ}C$, little changes occurred in silages fermented at $20^{\circ}C$, in terms of most biochemical parameters as well as bacterial and fungal populations. However, a high number of enterobacteria and yeasts (4 to $5\;log_{10}$ colony forming unit/g fresh materials) were detected at $15^{\circ}C$ and above. PCR-DGGE profile showed that Candida humilis predominated the fungi flora. For silage fermented at $10^{\circ}C$, no significant changes were observed in most silage characteristics when temperature was increased from $5^{\circ}C$ to $20^{\circ}C$. However, above $20^{\circ}C$, silage fermentation resumed as observed from the significantly increased number of lactic acid bacteria colonies, acetic acid content, and the rapid decline in pH and water-soluble carbohydrates concentration. DGGE results showed that Lactobacillus buchneri started to dominate the bacterial flora as temperature increased from $20^{\circ}C$ to $25^{\circ}C$. Conclusion: Temperature during fermentation as well as temperature during storage modulates microorganism population development and fermentation patterns. Silage fermented at $20^{\circ}C$ indicated that these silages should have lower aerobic stability at opening because of better survival of yeasts and enterobacteria.

Effects of diet and castration on fatty acid composition and volatile compounds in the meat of Korean native black goats

  • Jinwook Lee;Hye-Jin Kim;Sung-Soo Lee;Kwan-Woo Kim;Dong-Kyo Kim;Sang-Hoon Lee;Eun-Do Lee;Bong-Hwan Choi;Farouq Heidar Barido;Aera Jang
    • Animal Bioscience
    • /
    • v.36 no.6
    • /
    • pp.962-972
    • /
    • 2023
  • Objective: This study determined the effects of dietary treatments and castration on meat quality, fatty acids (FAs) profiles, and volatile compounds in Korean native black goats (KNBG, Capra hircus coreanae), including the relationship between the population of rumen microbiomes and meat FA profiles. Methods: Twenty-four KNBG (48.6±1.4 kg) were randomly allocated to one of four treatments arranged into a 2×2 factorial structure. The factors were dietary forage to concentrate ratio (high forage [HF, 80:20] and low forage [LF, 20:80]), and a castration treatment (castration [CA] vs non-castration [NCA]). Results: Among meat quality traits, the CA group exhibited a higher percentage of crude fat and water holding capacity (p<0.05). The profiles of the saturated fatty acid (SFA) in meat sample derived from CA KNBG showed a significantly lower percentage compared to NCA individuals, due to the lower proportion of C14:0 and C18:0. Feeding a high-forage diet to KNBG increased the formation of C18:1n7, C18:3n3, C20:1n9, C22:4n6 in meat, and polyunsaturated fatty acid (PUFA) profiles (p<0.05). Consequently, the n6:n3 ratio declined (p<0.05). There was an interaction between dietary treatment and castration for formation of C20:5n3 (p<0.05), while C18:1n9, C22:6n3, monounsaturated fatty acid (MUFA) and the MUFA:SFA ratio were influenced by both diet and castration (p<0.05). Nine volatile compounds were identified and were strongly influenced by both dietary treatments, castration (p<0.05), and their interaction. In addition, principal component analysis (PCA) revealed distinctly different odor patterns in the NCA goats fed LF diets. Spearman correlation analysis showed a high correlation between rumen bacteria and meat PUFAs. Conclusion: These results suggest the essential effects of the rumen microbial population for the synthesis of meat FAs and volatile compounds in KNBG meat, where dietary intake and castration also contribute substantially.

Analysis of a Sulfur-oxidizing Perchlorate-degrading Microbial Community (황 산화를 통해 퍼클로레이트를 분해하는 미생물 군집 분석)

  • Kim, Young-Hwa;Han, Kyoung-Rim;Hwang, Heejae;Kwon, Hyukjun;Kim, Yerim;Kim, Kwonwoo;Kim, Heejoo;Son, Myunghwa;Choi, Young-Ik;Sung, Nak-Chang;Ahn, Yeonghee
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.68-74
    • /
    • 2016
  • Perchlorate (ClO4) is an emerging pollutant detected in surface water, soil, and groundwater. Previous studies provided experimental evidence of autotrophic ClO4 removal with elemental sulfur (S0) particles and activated sludge, which are inexpensive and easily available, respectively. In addition, ClO4 removal efficiency was shown to increase when an enrichment culture was used as an inoculum instead of activated sludge. PCR-DGGE was employed in the present study to investigate the microbial community in the enrichment culture that removed ClO4 autotrophically. Microorganisms in the enrichment culture showed 99.71% or more ClO4 removal efficiency after a 7-day incubation when the initial concentration was approximately 120 mg ClO4/l. Genomic DNA was isolated from the enriched culture and its inoculum (activated sludge), and used for PCR-DGGE analysis of 16S rRNA genes. Microbial compositions of the enrichment culture and the activated sludge were different, as determined by their different DGGE profiles. The difference in DGGE banding patterns suggests that environmental conditions of the enrichment culture caused a change in the microbial community composition of the inoculated activated sludge. Dominant DGGE bands in the enrichment culture sample were affiliated with the classes β-Proteobacteria, Bacteroidetes, and Spirochaetes. Further investigation is warranted to reveal the metabolic roles of the dominant populations in the ClO4 degradation process, along with their isolation.