• Title/Summary/Keyword: microbial media

Search Result 294, Processing Time 0.028 seconds

Improvement of Power Generation of Microbial Fuel Cells using Maximum Power Point Tracking (MPPT) and Automatic Load Control Algorithm (최대전력점추적방법과 외부저항 제어 알고리즘을 이용한 미생물연료 전지의 전력생산 최대화)

  • Song, Young Eun;Kim, Jung Rae
    • KSBB Journal
    • /
    • v.29 no.4
    • /
    • pp.225-231
    • /
    • 2014
  • A microbial fuel cell (MFC) and bioelectrochemical systems are novel bioprocesses which employ exoelectrogenic biofilm on electrode as a biocatalyst for electricity generation and various useful chemical production. Previous reports show that electrogenic biofilms of MFCs are time varying systems and dynamically interactive with the electrically conductive media (carbon paper as terminal electron acceptor). It has been reported that maximum power point tracking (MPPT) method can automatically control load by algorithm so that increase power generation and columbic efficiency. In this study, we developed logic based control strategy for external load resistance by using $LabVIEW^{TM}$ which increases the power production with using flat-plate MFCs and MPPT circuit board. The flat-plate MFCs inoculated with anaerobic digester sludge were stabilized with fixed external resistance from $1000{\Omega}$ to $100{\Omega}$. Automatic load control with MPPT started load from $52{\Omega}$ during 120 hours of operation. MPPT control strategy increased approximately 2.7 times of power production and power density (1.95 mW and $13.02mW/m^3$) compared to the initial values before application of MPPT (0.72 mW and $4.79mW/m^3$).

Microbial Strains and Bioactive Exopolysaccharide Producers from Thai Water Kefir

  • Luang-In, Vijitra;Saengha, Worachot;Yotchaisarn, Manatchanok;Halaslova, Monika;Udomwong, Piyachat;Deeseenthum, Sirirat
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.4
    • /
    • pp.403-415
    • /
    • 2018
  • The aims of this novel work were to determine the microbial strains and exopolysaccharide (EPS) producers in water kefir from Nakhon Ratchasima Province, Thailand. Thirty-three microbial strains were identified using 16S rRNA gene analysis consisting of 18 bacterial strains, as 9 strains of acetic acid bacteria (AAB), 9 strains of lactic acid bacteria (LAB), and 15 yeast strains. All bacteria were able to produce EPS with a diverse appearance on agar media containing different sugars at a concentration of 8%. Culture supernatants from AAB and LAB showed 31-64% 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity with the highest antioxidant activity of 64% from Acetobacter pasteurianus WS3 and WS6. Crude EPS from A. pasteurianus WS3 displayed the highest ferric reducing antioxidant power at 280 mM $FeSO_4/g$ EPS, greatest anti-tyrosinase activity at 20.35%, and highest EPS production of 1,505 mg EPS/L from 8% sucrose. These microbes offer beneficial health implications and their EPSs can be used as food additives and cosmetic ingredients.

Isolation of a Lipolytic and Proteolytic Bacillus licheniformis from Refinery Oily Sludge and Optimization of Culture Conditions for Production of the Enzymes

  • Devi, Sashi Prava;Jha, Dhruva Kumar
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.515-524
    • /
    • 2020
  • With the increasing demand for enzymes in industrial applications there is a growing need to easily produce industrially important microbial enzymes. This study was carried out to screen the indigenous refinery bacterial isolates for their production of two industrially important enzymes i.e. lipase and protease. A total of 15 bacterial strains were isolated using Soil Extract Agar media from the oil-contaminated environment and one was shown to produce high quality lipase and protease enzymes. The culture conditions (culture duration, temperature, source of nitrogen, carbon, and pH) were optimized to produce the optimum amount of both the lipase (37.6 ± 0.2 Uml-1) and the protease (41 ± 0.4 Uml-1) from this isolate. Productivity of both enzymes was shown to be maximized at pH 7.5 in a medium containing yeast extract and peptone as nitrogen sources and sucrose and galactose as carbon sources when incubated at 35 ± 1℃ for 48 h. Bacterial strain SAB06 was identified as Bacillus licheniformis (MT250345) based on biochemical, morphological, and molecular characteristics. Further studies are required to evaluate and optimize the purification and characterization of these enzymes before they can be recommended for industrial or environmental applications.

Conversion of Citron (Citrus junos) Peel Oil by Enterobacter agglomerans

  • PARK , YEON-JIN;KIM, IN-CHEOL;BAEK, HYUNG-HEE;BANG, OK-KYUN;CHANG, HAE-CHOON
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1275-1279
    • /
    • 2004
  • Citron peel oil was extracted from citron (Citrus funas) fruit by steam distillation, and was used as starting material for microbial conversion to synthesize attractive flavor compounds by using Enterobacter agglomerans 6L. E. agglomerans was isolated from citron peel and was able to metabolize the citron peel oil and grew well ($A_{600}:\;3.0$) on the citron peel oil as the sole carbon source. Multiple terpene metabolites were produced by E. agglomerans 6L on M9 salt media with citron oil vapor. The identified bioconversion products from the citron peel oil included trans-2-decenal, octanol, $\delta$­valerolactone, $\gamma$-valerolactone, cryptone, hydroxycitronellol, cuminol, and $\gamma$-dodecalactone.

Microbial Conversion of (+)-Limonene by an Enterobacter agglomerans Isolate

  • Park, Yeon-Jin;Kim, In-Cheol;Chang, Hae-Choon
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.636-639
    • /
    • 2003
  • Entercbacter agglomerans 6L was isolated from citron (Citrus junos) peel by using an enrichment culture containing (+)-limonene. It was able to metabolize limonene and grew well ($A_{600}$:4.5) on limonene as a sole carbon source. E. agglomernas 6L was highly resistant to limonene toxicity, and grew to 1.0 optical density ($A_{600}$) even at 5% (v/v) of limonene in Luria-Bertani media. ${\gamma}-Valerolactone$ and cryptone were detected as the major metabolic products of limonene by E. agglomerans 6L.

Production of Rapamycin in Streptomyces hygroscopicus from Glycerol-Based Media Optimized by Systemic Methodology

  • Kim, Yong Hyun;Park, Bu Soo;Bhatia, Shashi Kant;Seo, Hyung-Min;Jeon, Jong-Min;Kim, Hyun-Joong;Yi, Da-Hye;Lee, Ju-Hee;Choi, Kwon-Young;Park, Hyung-Yeon;Kim, Yun-Gon;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1319-1326
    • /
    • 2014
  • Rapamycin, produced by the soil bacterium Streptomyces hygroscopicus, has the ability to suppress the immune system and is used as an antifungal, anti-inflammatory, antitumor, and immunosuppressive agent. In an attempt to increase the productivity of rapamycin, mutagenesis of wild-type Streptomyces hygroscopicus was performed using ultraviolet radiation, and the medium composition was optimized using glycerol (which is one of the cheapest starting substrates) by applying Plackett-Burman design and response surface methodology. Plackett-Burman design was used to analyze 14 medium constituents: M100 (maltodextrin), glycerol, soybean meal, soytone, yeast extract, $(NH_4)_2SO_4$, $\small{L}$-lysine, $KH_2PO_4$, $K_2HPO_4$, NaCl, $FeSO_4{cdot}7H_2O$, $CaCO_3$, 2-(N-morpholino) ethanesulfonic acid, and the initial pH level. Glycerol, soytone, yeast extract, and $CaCO_3$ were analyzed to evaluate their effect on rapamycin production. The individual and interaction effects of the four selected variables were determined by Box-Behnken design, suggesting $CaCO_3$, soytone, and yeast extract have negative effects, but glycerol was a positive factor to determine rapamycin productivity. Medium optimization using statistical design resulted in a 45% ($220.7{\pm}5.7mg/l$) increase in rapamycin production for the Streptomyces hygroscopicus mutant, compared with the unoptimized production medium ($151.9{\pm}22.6mg/l$), and nearly 588% compared with wild-type Streptomyces hygroscopicus ($37.5{\pm}2.8mg/l$). The change in pH showed that $CaCO_3$ is a critical and negative factor for rapamycin production.

Antimicrobial Activities of Medicinal Herb Extracts (한약재추출물의 항균활성)

  • Chang, Hyung-Soo;Choi, Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.2
    • /
    • pp.261-269
    • /
    • 2012
  • In this study, 18 kinds of Korean medicinal herb extracts were examined for anti-microbial activities against pathogenic microorganisms. The methanol (MeOH) extracts from Schizandra chinensis, Rhus javanica and Caesalpinia sappan exhibited antimicrobial activities against most pathogenic microorganisms at concentrations of 5 mg/mL, whereas the other 15 extracts exhibited anti-microbial activities at concentrations of 30 mg/mL. The minimum concentration at which Schizandra chinensis extracts inhibited for S. epidermidis and Bor. bronchiseptica was 0.6 mg/mL. The MeOH extracts from Schizandra chinensis, Caesalpinia sappan, Rhus javanica and Seutellaria baicalensis which had higher anti-microbial activities were subsequently fractionated using 5 different solvents, and further screened for anti-microbial activities. The inhibitory effects of ethyl acetate (EtOAc) extracts on microbial growth were greater compared to any other solvent extracts. In order to investigate the inhibitory effect of Korean medicinal herbs with high anti-microbial activities on microbial proliferation, the MeOH extracts at concentrations of 0, 100, 300 and 500 ppm were added to the media. No addition of extracts caused rapid growth of microbes after 12 hours incubation. As the concentration of extracts from Rhus javanica and Caesalpinia sappan increased, the growth-inhibiting effect on gram-positive bacteria including S. aureus, S. epidermidis, and L. monocytogenes was prominent. Rhus javanica extracts exhibited growth-inhibiting activity for gram-negative bacteria including Sal. Pullorum and Sal. Choleraesuis. The low concentration of extracts from Rhus javanica and Caesalpinia sappan exhibited the growth of Bor. bronchiseptica and E. coli serotype $O_8$. However, the higher concentration of extracts from Rhus javanica and Caesalpinia sappan exhibited a strong inhibitory effect on microbial proliferation.

Short-term Hypothermic Preservation of CHO Cells Using Serum-Free Media (무혈청 배지를 이용한 CHO 세포의 단기 저온보존)

  • Byoun, Soon-Hwi;Park, Hong-Woo;Choe, Tae-Boo
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.306-311
    • /
    • 2006
  • Cell preservation is indispensable in animal cell culture process and should be established according to the cell characteristics. In this study, we experimented hypothermic preservation of CHO cells that is widely used in pharmaceutical industry to produce therapeutic proteins and established a stable method of preservation. The highest viability of CHO cells was obtained when the cells were preserved using rolling tube, which means the cells should be suspended to avoid the cell lumping during the preservation. Also, we obtained superior preservation result under the anaerobic condition. To evaluate the serum-free media as a preservation solution, we investigated cell growth after hypothermic preservation using serum-free media. High cell viability and normal cell growth was observed during 10 days using serum-free media. Moreover, we found that more effective preservation when ${\alpha}$-tocopherol and retinoic acid is added to media as an additive. In the case of 1 liter large scale hypothermic preservation using established protocol, cell viability and growth rate was obtained as good as small scale one. This study is considered to be helpful for hypothermic preservation of CHO cells and large scale hypothermic preservation may be available through the further studies.

Optimization of in vitro seed germination of Taraxacum platycarpum

  • Lee, Jung-Hwan;Kim, Young-Kwan;Oh, Eun-Yi;Jung, Kuk-Young;Ko, Ki-Sung
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.4
    • /
    • pp.403-408
    • /
    • 2009
  • Dandelion (Taraxacum platycarpum) has been widely utilized for medicinal purposes. However, the dandelion seeds are relatively difficult to germinate under cultivation conditions, which hampers seedling propagation of dandelion plants and reduces the opportunity of usage of such a useful medicinal plant. Thus, in this study, in vitro conditions for the dandelion seed germination were optimized to enhance the germination rate. In seed washing steps, the sequential treatments with 20% of ethanol, 20% of NaOCl, and distilled water avoided microbial contamination with the highest in vitro germination rate (67.5%) from seeds sown in germination media. The media supplemented with 1.4 g/L of MS salts and 1% of sucrose significantly enhanced the germination rate compared to the media with 4.4 g/L of MS and 3% of sucrose. Sowing the seeds vertically in the optimized media supplement conditions, 1.4 g/L of MS salts and 1% of sucrose, gave the maximum in vitro germination rate (61%), which was almost three times higher than sowing seeds on a soil pot (23%). Our results indicate that the seed washing and sowing methods including germination medium supplements can be optimized to enhance in vitro seed germination of dandelion.

Studies on the Control of Environmental Wastes by Means of Immobilized Biocatalysts (III) Preparation of Immobilized Biocatalyst to Ethanol Fermentation (Immobilized Biocatalysts를 이용한 환경성 폐기물질 억제에 관한 연구 (제3보) 알코올 발효를 위한 Immobilized Biocatalysts 제조)

  • 김성기
    • Journal of Environmental Health Sciences
    • /
    • v.17 no.1
    • /
    • pp.120-128
    • /
    • 1991
  • Saccharomyces cerevisiae was immobilized by incubating iron oxides with calcium alginate, and by polyacrylamide entrapment to use repeatedly for the conversion of glucose to ethanol. Magnetic and non-magnetic immobilized yeast and polyacrylamide immobilized yeast were compared with the native yeast a batch-fermentation of ethanol from glucose. Three kinds of immobilized yeast tended almost identically, having ethanol productivity as well as the final yield about the same to what was found for the native yeast. The long-term operational stability of three kinds of immobilized yeast were significant difference according as immobilized yeast activation or non-activation before ethanol fermentation. In the non-activation they lost their activity of fermentation rapidly in the beginning stage an slower at a later stage. On the other hand, in the activation with nutrient media, their activities were increased to some extent and stable in the later stage. The cell count of three kinds of immobilized yeast after activiation by incubating nutrient media, increased by a factor of about 45 to 48, whereas the fermenting capacity increased by a factor of 174 to 178. In the prearation of immobilized biocatalysts, magnetic matter does not seem to have any adverse affect on the properties of the microorganism. The immobilized biocatalysts by utilizing magnetic matter have some advantages, especially in application of viscous media or insoluble particle-containing media, for this work was linked with microbial utilization of environmental wastes and elimination of envirnmental pollutant.

  • PDF