• Title/Summary/Keyword: microbial media

Search Result 295, Processing Time 0.026 seconds

Yeast Extract: Characteristics, Production, Applications and Future Perspectives

  • Zekun Tao;Haibo Yuan;Meng Liu;Qian Liu;Siyi Zhang;Hongling Liu;Yi Jiang;Di Huang;Tengfei Wang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.151-166
    • /
    • 2023
  • Yeast extract is a product prepared mainly from waste brewer's yeast, which is rich in nucleotides, proteins, amino acids, sugars and a variety of trace elements, and has the advantages of low production cost and abundant supply of raw material. Consequently, yeast extracts are widely used in various fields as animal feed additives, food flavoring agents and additives, cosmetic supplements, and microbial fermentation media; however, their full potential has not yet been realized. To improve understanding of current research knowledge, this review summarizes the ingredients, production technology, and applications of yeast extracts, and discusses the relationship between their properties and applications. Developmental trends and future prospects of yeast extract are also previewed, with the aim of providing a theoretical basis for the development and expansion of future applications.

Lipase Production by Limtongozyma siamensis, a Novel Lipase Producer and Lipid Accumulating Yeast

  • Varunya Sakpuntoon;Savitree Limtong;Nantana Srisuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1531-1541
    • /
    • 2023
  • Lipase is a well-known and highly in-demand enzyme. During the last decade, several lipase optimization studies have been reported. However, production costs have always been a bottleneck for commercial-scale microbial enzyme production. This research aimed to optimize the conditions for lipase production by Limtongozyma siamensis DMKU-WBL1-3 via a One-Factor-At-a-Time (OFAT) approach combined with statistical methods while using a low-cost substrate. Results suggest that low-cost substrates can be substituted for all media components. An optimal medium was found, using response surface methodology (RSM) and central composite design (CCD), to consist of 0.50% (w/v) sweet whey, 0.40% (w/v) yeast extract (food grade), and 2.50% (v/v) palm oil with the medium pH adjusted to 4 under shaking flask cultivation. From an economic point of view, this work was successful in reducing production costs while increasing lipase productivity. The medium costs were reduced by 87.5% of the original cost while lipase activity was increased by nearly 6-fold. Moreover, lipase production was further studied in a 2-L stirred-tank fermentor. Its activity was 1,055.6 ± 0.0 U/ml when aeration and agitation rates were adjusted to 1 vvm and 170 rpm, respectively. Interestingly, under this optimal lipase production, the yeast showed accumulated lipids inside the cells. The primary fatty acid is a monounsaturated fatty acid (MUFA) that is typically linked to health benefits. This study hence reveals promising lipase production and lipid accumulation by L. siamensis DMKU-WBL1-3 that are worthy of further study.

A Study on the Filtration of Swine Anaerobic Digestate Using Multi-Layered Compost Beds (다층구조의 퇴비단을 이용한 돈분뇨 슬러리 혐기소화액의 여과효과에 대한 연구)

  • Han, Deug-Woo;Lee, Dong-Hyun;Kim, Jung-Gon;Yang, Seung-Hak;Bae, Jin-Woo;Kwag, Jung-Hoon;Choi, Dong-Yoon;Jeong, Kwang-Hwa
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.4
    • /
    • pp.72-81
    • /
    • 2013
  • The objective of this study was to verify whether SCB(Slurry Composting & Bio-filtration) system can be applied for the treatment of anaerobic digestion(AD) wastewater and also, to identify the most effective set among three filtration compost beds tested. Results can be summarized as these; (a) When AD wastewater was sprayed on the top of beds which were mainly composed of sawdust and/or other media and, subsequently, filtrates collected and analyzed, there were large drop in the values of Electric Conductivity(EC), Total Suspended Solid(TSS), Biochemical Oxygen Demand(BOD), and Chemical Oxygen Demand(COD). In contrast, Total Nitrgen(T-N) and Total Phosphorus(T-P) were progressively elevated. We consider these changes as positive if the filtrate are to be utilized as liquid fertilizer. (b) When three sets of filtration beds (T1, T2, T3) were compared for their effectiveness, no significant difference was found among them. These indicate that expensive sawdust can be replaced in part with cheaper media such as woodchip, rice husks, or others. (c) At early stage of operation (within 20 days), BOD in filtrates were maintained at high level probably due to the lack of microbial activity. During the same stage, T-N, T-P was at low level but, were elevated to higher levels thereafter. These data, when combined, indicate that the filtration system needs at least a couple of weeks for the optimized microbial functioning. (d) The temperatures of the experimental beds were progressively dropped as the experiment continued through the fall season, although filtration effectiveness was not noticeably influenced.

Cryopreservation of CHO Cell using Serum-Free Media (무혈청 배지를 이용한 CHO 세포의 동결보존)

  • Kim, Yoo-Kang;Park, Hong-Woo;Choe, Tae-Boo
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.110-117
    • /
    • 2006
  • During routine maintenance, animal cell lines are commonly cryopreserved in growth medium containing serum with 10% DMSO. But, in case of bioprocess under the serum-free conditions, including cultivation of cell lines and producing of pharmaceuticals, the cryopreservation should be executed without serum to prevent a cross-contamination. This experiments were performed to investigate the effects of the serum-free cryopreservation on the CHO cells. To improve the survival rates of the cryopreserved CHO cells in serum-free condition, first, the effects of permeable and non-permeable additives for substitute serum on cell viability were investigated. The combination of 10% DMSO and 0.03 M raffinose in MEM-${\alpha}$ without serum indicated 76% of cell viability. However, it did not reach the survival rates(more than 95%) of the conventional cryopreservation. In the second, to evaluate the cryopreservative ability of the serum-free medium(SFM) we compared viability of the CHO cells cryopreserved in the SFMs(Sigma C5467, C4726, and C1707, JBI SF486 and PF486), the cryoprotectant(Genenmed CAN-1000) and the MEM-${\alpha}$ with serum. All solution contained 10% DMSO. As a result of the comparison, cryopreserved cells in the SFMs showed over 95% of viability and appeared predominant viability better than cryoprotectant CAN-1000. Finally, we assessed the stability of the CHO cells in the long-term cryopreservation(LTC) using SFM. Every three months, the cryopreserved CHO cells were thawed to estimate the cell viability and the recovery rates. Then, real-time RT-PCR analyzed the inserted CHO DHFR gene. All results for the LTC appeared the same stability as the serum containing cryopreservation. In the conclusion, it could be seen that the LTC in the SFM can substitute for serum using methods in the bioprocess proceeded by CHO cells for more than 18 months.

Biological Hazard Analysis of Leaf Vegetables and Fruits According to Types of Cultivation and Distribution Systems (엽채류 및 과채류의 재배유형 및 유통경로별 생물학적 위해요소 조사)

  • Yu, Yong-Man;Youn, Young-Nam;Choi, In-Uk;Yuan, Xianglong;Lee, Young-Ha
    • Food Science and Preservation
    • /
    • v.14 no.1
    • /
    • pp.35-41
    • /
    • 2007
  • As the consumption of environmentally friendly agricultural products increases, food safety is at the forefront of public health concerns. We analyzed the biological hazards of 26 species of leaf vegetables and 4 species of fruit according to types of cultivation (conventional or organic filming) and distribution system (giant retailers or organic food stores) using various culture media, automatic bacterial identification systems, and microscopy, Total bacterial count of unwashed agricultural product ranged from $5.2{\times}10^{3}\;to\;1.5{\times}10^{5}\;CFU/mL$ (from 0.1 g of agricultural products), and the average count dropped 25-fold (range, 8-60-fold) after water washing. Microbial levels of washed organic agricultural products were $6.0{\times}10^{2}-1.9{\times}10^{4}\;CFU/mL$, and were not significantly different f개m the microbial loads on conventionally farmed produce. There was no significant difference in bacterial count from agricultural produce purchased from giant retailers or organic food stores. Total microbial count of Chinese cabbage, welsh onion, red chicory and kale were comparatively high, and Enterobacter cloacae was isolated most frequently. Parasites were detected in agricultural products purchased from conventional farm products in the stores of giant retailers, and in organic food stores, and parasite prevalence was especially high in Chinese cabbages and welsh onion. The study indicated that cultivation methods and distribution systems did not cause significant differences in biological contamination levels of agricultural produce. Some vegetables and fruits were highly contaminated effective sanitizing methods to reduce these biological hazards are needed.

Microbial Leaching of Iron from Shinyemi Magnetite Ore (미생물을 이용한 신예미 자철광으로부터 철 침출에 관한 연구)

  • Roh, Yul;Oh, Jong-Min;Suh, Yong-Jae;Jang, Hee-Dong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.357-366
    • /
    • 2007
  • Microorganisms participate in a variety of geochemical processes such as weathering and formation of minerals, leaching of precious metals from minerals, and cycling of organic matter The objective of this study was to investigate biogeochemical processes of iron leaching from magnetite ore by iron-reducing bacteria isolated from intertidal flat sediments, southwestern part of Korea. Microbial iron leaching experiments were performed using magnetite ore, Shinyemi magnetite ore, in well-defined media with and without bacteria at room temperature for a month. Water soluble Fe and Mn during the leaching experiments were determined by ICP analysis of bioleached samples, and the resulting precipitated solids were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The extent of iron leaching from magnetite in the aerobic conditions (Fe = 15 mg/L and Mn = 3.41 mg/L) was lower than that in the anaerobic environments (Fe = 32.8 mg/L and Mn = 5.23 mg/L). The medium pH typically decreased from 8.3 to 7.2 during a month incubation. The Eh of the initial medium decreased from +144.9 mV to -331.7 mV in aerobic environments and from -2.3 mV to -494.6 mV in anaerobic environments upon incubation with the metal reducing microorganisms. The decrease in pH is due to glucose fermentation producing organic acids and $CO_2$. The ability of bacteria to leach soluble iron from crystalline magnetite could have significant implications for biogeochemical processes in sediments where Fe(III) in magnetite represents the largest pool of electron acceptor as well as to use as a novel biotechnology for leaching precious and heavy metals from raw materials.

Microbial degradation and other methods for accelerated degradation the Herbicide Imazapyr (제초제 Imazapyr 의 미생물에 의한 분해 및 기타 방법에 의한 분해 촉진)

  • Lee, Jae-Koo;Kwon, Jeong-Wook
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.1
    • /
    • pp.5-10
    • /
    • 1998
  • The microbial degradation, photosensitizer-mediated photolysis, and bioceramic- accelerated degradation of the herbicide imazapyr were investigated using four types of soil. 1. Seven strains of microorganisms isolated from the soil A and the active sludge collected from the waste water disposal plant in CheongJu did not give any distinct degradation products in pure culture. When imazapyr (10ppm) was incubated for 14days with each of the 6strains of the known bacteria, they did not produce any noticeable products, either, suggesting that imazapyr was degraded very little by microorganisms in aqueous media. Meanwhile, when 50ppm of imazapyr was incubated in soil A and B for 6months, a degradation product of m/z 279 was detected. It turned out to be 2-[(1-carbamoyl-1,2-dimethylpropyl)carbamoyl]nicotinic acid, which was formed by the hydrolytic cleavage of the imidazolinone ring and by tautomerism. When imazapyr was exposed to sunlight, degradation rates were 14.6% under the control and 66.0, 76.5, 26.7, and 90.0% in the presence of PS-1 (100ppm), PS-1 (200ppm), PS-2(100ppm), and PS-3(100ppm), respectively, and a degradation product of m/z 149 was tentatively identified in the treatment of PS-1. 2. When soil C and D treated with bioceramic were incubated for 7weeks, the $^{14}C$-activities of $^{14}CO_2$ evolved were 2.03 and 1.12% of the originally applied ones, respectively, whereas those in control soils without bioceramic were 1.88 and 0.82% showing no significant defferences.After 5 weeks, however,the differences in the amounts of $^{14}CO_2$ between the two treatments increased gradually, suggesting the bioceramic effect.

  • PDF

Optimization of Microbial Production of Ethanol form Carbon Monoxide (미생물을 이용한 일산화탄소로부터 에탄올 생산공정 최적화)

  • 강환구;이충렬
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.73-79
    • /
    • 2002
  • The method to optimize the microbial production of ethanol from CO using Clostridium ljungdahlii was developed. The kinetic parameter study on CO conversion with Clostridium ljungdahlii was carried out and maximum CO conversion rate of 37.14 mmol/L-hr-O.D. and $K_{m}$ / of 0.9516 atm were obtained. It was observed that method of two stage fermentation, which consists of cell growth stage and ethanol production stage, was effective to produce ethanol. When pH was shifted from 5.5 to 4.5 and ammonium solution was supplied to culture media as nitrogen source at ethanol production stage, the concentration of ethanol produced was increased 20 times higher than that without shift. Ethanol production from CO in a fermenter with Clostridium ljungdahlii was optimized and the concentration of ethanol produced was 45 g/L and maximun ethanol productivity was 0.75 g ethanol/L-hr.

The Study on the Effect of Efficient Microorganism for Early Stabilization of the Burial Sites (매몰지 조기 안정화를 위한 유용 미생물의 효과에 관한 연구)

  • Kim, Hyun-Sook;Park, Sujung;Jheong, Weonhwa;Srinivasan, Sathiyaraj;Lee, Sang-Seob
    • Korean Journal of Microbiology
    • /
    • v.49 no.4
    • /
    • pp.343-352
    • /
    • 2013
  • In this study, we have evaluated the effect of efficient microorganisms on odor-removal efficiency and early stabilization of the burial sites. We have developed an efficient microorganism designated as 'KEM' which have the ability to degrade organic compounds and remove odor effectively. Other efficient microorganisms already used on site, such as EM and Bacillus sp., were also compared. We preceded these experiment using lab-scale reactors under three conditions (control, only media and only body) and comparing the effect of with or without the application of tree efficient microorganisms separately. Analysis was focused on eight components (ammonia, TMA, $H_2S$, methyl mercaptan, dimethyl sulfide, dimethyl disulfide, $CO_2$ and $CH_4$), and as a result, efficient microorganisms were shown efficiency in the removal of ammonia and methyl mercaptan. The applied KEM decayed up to 71.2% of the buried meat. We were unable to observe significant differences in microbial communities between efficient microorganisms-treated and non-treated reactors due to the large presence of microorganisms in both soil and carcasses. However, it was possible to observe the effect on odor control and decay rate through the application of efficient microorganisms.

Diversity and Antimicrobial Activity of Actinomycetes Isolated from Rhizosphere of Rice (Oryza sativa L.) (벼 근권에서 분리한 방선균의 다양성과 항균 활성)

  • Lee, Hye-Won;Ahn, Jae-Hyung;Weon, Hang-Yeon;Song, Jaekyeong;Kim, Byung-Yong
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.371-378
    • /
    • 2013
  • Various microorganisms live in soil, of which those colonizing rhizosphere interact with nearby plants and tend to develop unique microbial communities. In this study, we isolated diverse actinomycetes from rhizosphere of rice (Oryza sativa L.) cultivated in fertilized (APK) and non-fertilized (NF) paddy soils, and investigated the diversity and antimicrobial activity of them. Using four kinds of selective media, 152 isolates were obtained from the soil samples and identified by determining 16S rRNA gene sequence. All of the isolates showed 99.0%~100.0% similarities with type strains and were classified into six genera: Dactylosporangium, Micromonospora, Kitasatospora, Promicromonospora, Streptomyces and Streptosporangium. Most of the isolates, 143 isolates, were classified into the genus Streptomyces. Additionally, many isolates had antimicrobial activity against plant pathogens, especially Magnaporthe oryzae (rice blast pathogen) in fungi. These findings demonstrated that rice rhizosphere can be a rich source of antagonistic actinomycetes producing diverse bioactive compounds.