• 제목/요약/키워드: microbial media

검색결과 295건 처리시간 0.028초

디젤유 분해균주의 특성 및 토양배양 (Characterization of Diesel Oil-Degrading Bacteria)

  • 안민정;한윤전;임현섭;최기현;권오범;정병철
    • 미생물학회지
    • /
    • 제39권2호
    • /
    • pp.108-113
    • /
    • 2003
  • 디젤유로 오염된 토양으로부터 분리한 디젤 분해 우수 균주를 HS 균주로 명명하고, 각 균주의 디젤유 분해능과 특성을 조사하였다. 분리된 HS균주의 동정결과 HSI 균주는 Acinetobacter sp. HS2, HS3 균주는Pseudomonas sp.로 동정되었다. 최소배지에서 디젤유2%, pH 7.0,$25^{\circ}C$, 교반속도 200 rpm의 조건으로 5일간 배양한 결과 HSI 균주는 88% 이상의 높은 분해효율을 나타내었다. 소수성과 유화능의 측정 결과 HSI 균주가 가장 높은 소수성을 나타내었고, 유화능은 HS3 균주가 가장 높게 나타났다. 위의 결과를 토대로 액체 배양시 분해효율이 가장 높은 HSI 균주를 선택하여 토양배양을 실시한 결과 30일이 경과된 후 80%이상의 디젤유 분해효율을 나타내었고, 디젤유 분해효율은 미생물 활성과 비례하는 것으로 확인되었다. 따라서 신규 분리된 디젤유 분해균주는 높은 디젤유 분해능과 토양 생존능으로 실제 유류오염 환경에 적용이 가능할 것으로 사료된다.

태안 유출 원유의 생물정화를 위한 유용미생물 적용 (Application of Effective Microorganisms for Bioremediation of Crude Oil Spill in Taean, Korea)

  • 이은주;이상모;이군택;김인성;김용학
    • 한국환경과학회지
    • /
    • 제17권7호
    • /
    • pp.795-799
    • /
    • 2008
  • We have studied bioremediation of effective microorganisms on crude oil spill in Taean, west-coast of Korea. Oil contaminated soil samples were collected on December 14, 2007, seven days after the Hebei Spirit oil-spilled accident. Total petroleum hydrocarbon (TPH) was measured to evaluate the effectiveness of effective microorganisms (EM) which were composed with yeast, photosynthetic bacteria and lactic acid bacteria on oil degradation. TPH concentration before EM treatment was 323.8 mg/kg, whereas TPH concentrations on 2 days after EM treatment and that of control (without EM) was 102.1 mg/kg and 170.6 mg/kg, respectively. On six days after EM treatment TPH was 91.3 mg/kg and that of control was 127.7 mg/kg. Percentages of degraded crude oil were 47.3% without EM and 68.5% with EM, 60.6% without EM and 71.8% with EM on 2 and 6 days after EM treatment, respectively. These results clearly showed that the application of effective microorganisms toward oil-contaminated soil was quite useful to degrade crude oil spill. These results were derived from the effects of biostimulation of microbial media nutrients and bioaugmentation of effective microorganisms. If we carefully apply these effective microorganisms, it can be a useful bioremediation method to recover oil-contaminated marine ecosystems.

미생물 고정화를 이용한 산성염료의 처리 (Treatment of Acid dye Using Microbial Immobilization)

  • 김정목;조무환;양용운
    • 한국염색가공학회지
    • /
    • 제11권2호
    • /
    • pp.19-26
    • /
    • 1999
  • Strains degrading and decolorizing acid dyes, Nylosan red E-BL 150%. were isolated from natural system, was named as ARK3. The optimal culture conditions of temperature and pH were $35^\circ{C}$, 7.0, respectively. Growth rate of cells in conditions of aerobic shaking more than standing culture conspicuously increased, and optical density of those to strain ARK3 were found as 1.38 and 0.25 after 42 hrs. Decolorization efficiency in batch culture which used as immobilization media to natural zeolite was 15% after 6 hrs, while suspension culture was 5%, also its of immobilization and suspension culture were 90% and 85% after 48 hrs, respectively. Decolorization efficiency of air-lift bioreactor was more than 90% to a dilution rate of $0.038hr^{-1}$, but that was decreased as 70%, when the dilution rate was $0.05hr^{-1}$. Even though at maximum dilution rate of this study, there was not appeared "wash out" phenomienon of biomass. Decolorization efficiency was 97.7% at a dilution rate of $0.025hr^{-1}$, when influent dye concentration was $100mg/\ell$. But if influent dye concentration increased as $150mg/\ell$, even though MLVSS increased, that of treatment water decreased as 93%. Also, when influent dye concentration increased as $200mg/\ell$ and $300mg/\ell$, decolorization efficiencies of treatment water abruptly decreased as 85% and 63%, respectively. Decolorization efficiency was more than 92% to the limit volumetric loading rate of $3.75mg/\ell\cdot{hr}$hr, without regard to variation of influent dye concentration or hydraulic retention time. if volumetric loading rate was more than $3.80mg/\ell\cdot{hr}$, at same condition, decolorization efficiency was lower decrease of retention time than increase of influent dye concentration.entration.

  • PDF

Chitinase을 생산하는 곤충병원미생물 Metarhizium anisopliae HY-2(KCTC 0156BP)의 토양해충 생물검정

  • 서은영;손광희;신동하;김기덕;박두상;박호용
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2002년도 생물공학의 동향 (X)
    • /
    • pp.469-472
    • /
    • 2002
  • 균체 생산성 실험과 chitinase 생산성 실험을 비교해 볼 때, chitinase만을 생산하는 조건 에서는 배지성분에 chitin을 첨가해 주는 것이 좋으나, 해충 방제용으로 살균력을 증진시키기 위하여 균체량과 chitinase의 생성량 및 산업적, 경제적 사용이 용이한 배지를 고려할 때에는 쌀겨와 밀기울이 첨가된 배지가 좋은 배지임을 알 수 있었다. 또한 이 배지를 이용하였을 경우 균체는 1X$10^8$ cfu/g, chitinase는 370mU/g로 생산되었으며 생물검정결과 53-64%의 탁월한 살충효과를 확인 할 수 있었다.

  • PDF

토양에서 분리한 Bacilus flexus로부터 Invertase의 생산 (Production of Invertase from Newly Isolated Strain Bacilus flexus)

  • 오태석;윤희;심예지;김진우;최민지;윤종원
    • KSBB Journal
    • /
    • 제25권1호
    • /
    • pp.79-84
    • /
    • 2010
  • In the present study, we isolated a new bacterial strain producing invertase (EC 3.2.1.26) and determined optimized culture condition in flask culture. The strain was identified as Bacilus flexus determined by the 16S rDNA sequencing method. The invertase was produced only in the sucrose medium as the sole carbon source. Potassium nitrate was an adequate nitrogen source for enzyme production, whereas meat peptone showed the highest bacterial growth. Enzyme production was increased about 2-fold when $MgSO_4\cdot7H_2O$ was supplemented to the growth media. The optimum temperature was found to be $30^{\circ}C$ for both enzyme production and bacterial growth. Invertase exhibited pH optima in the range 5.0-6.0 and have a temperature optimum at $40^{\circ}C$, similarly to other invertases found from different microbial sources. Several mineral ions (K and Fe) stimulated the invertase activity, whereas some bioelements (Ag, Mg, and Mn) inhibited enzyme activity. Under the optimized culture condition, the maximum enzyme production (over 250 units/mL) was achieved at 20 h. To the best of our knowledge, this is the first time to report on invertase production by Bacilus flexus.

Pseudomonas sp. EP-3 rhamnolipid 에 의한 진딧물 살충성 생산을 위한 유자씨앗 부산물의 재활용 (Reuse of Yuza Seed By-product for Production of Aphicidal Rhamnolipid by Pseudomonas sp. EP-3)

  • 임다정;박태현;양시영;김진철;김인선
    • 한국환경농학회지
    • /
    • 제36권1호
    • /
    • pp.36-42
    • /
    • 2017
  • BACKGROUND: Yuza seed by-product has been produced in a large amount from the agricultural farms in the southern area of Korea. It has been mostly abandoned after commercial process for the production of juice, jam and tea. The study on the reuse of the yuza seed by-product has received much attention as a bio-resource material for the production of active compound in agriculture. METHODS AND RESULTS: Insecticidal rhamnolipid-producing Pseudomonas sp. EP-3 was grown in mineral salt media with the yuza seed by-product at 2, 20, 50 and 100 g/L. The growth of EP-3 was accompanied by a increase in insecticidal activity against green peach aphid. The highest insecticidal activity was observed when EP-3 was grown in the medium containing 50 g/L of the seed sample, producing approximately 996 mg/L of rhamnolipid at 96 h. Palmitic acid, stearic acid, oleic acid and linoleic acid were determined as the major fatty acids of the seed sample. The EP-3 cultures grown on the fatty acid mixture extracted from the seed sample showed a aphid mortality similar to that of cultures grown on the seed sample. The EP-3 cultures grown on 50 g/L of the seed sample showed aphid mortality more than 90% under greenhouse conditions. CONCLUSION: This study suggested that the yuza seed by-product may be used as a renewable material for microbial production of rhamnolipid against green peach aphid.

결착제 함유 항균성 물질로 코팅한 폴리에틸렌 필름의 제조 및 이를 이용한 딸기의 환경기체조절포장 (Fabrication of Polyethylene Films Coated with Antimicrobials in a Binder and Their Application to Modified Atmosphere Packaging of Strawberries)

  • 김영민;이상백;조성환;이동선
    • 한국식품저장유통학회지
    • /
    • 제7권1호
    • /
    • pp.12-18
    • /
    • 2000
  • 경제적이면서 효과적인 항균성 필름의 생산방법으로서 corona 저려한 저밀도 폴리에틸렌 (LOPE) 필름에 천연항균성 물질을 코팅하는 방법을 개발하고, 이를 딸기의 포장에 적용하였다. 보다 안정한 항균제 코팅 필름의 생산을 위하여 결착제와 함께 코팅한 필름의 생산방법을 검토한 결과, polyamide수지용 과 항균생 물질을 함께 코팅함에 의하여 안정한 코팅을 행성할 수 있었다. 이의 항균성을 미생물 평판 배지 상에서 확인한 결과, 1% 자몽종자추출물로 코팅한 LDPE필름이 Escherichia coli, Staphylococcus aureus, Bacullus subtilis, Bacillus cereus, Leuconostoc mesenteroides, Micrococcus flavus, Saccharomyces cerevisiae 균주에 대해서 항균활성을 보여서 가장 우수하였다. 반면에 10% 대황추출물 코팅한 필름은 오직 M fiav$\mu$s에 대해서만 항균성올 보였고, 10% 대황추출물 코팅 필름은 실험에 사용된 10균주에 대해서 항균성을 나타내지 많았다. 결착제를 이용한 향균제 코팅필름은 딸기의 포장에 적용시 환경기체조절 포장에 작용하였을 때에 포장내에 $O_2$ 1.4-5.5%, $O_2$ 5.7~7.9%의 범위를 형성시켰으며, 비슷한 기체조성을 가진 일반 LDPE필름의 밀봉포장에 비해서 호기성 박테리아와 효모/곰팡이의 생육을 억제하였으나, 부패율 억제에는 뚜렷한 효과를 보이지는 않았다.

  • PDF

터널에서 미학적 문제를 야기하는 진균 및 항진균 활성을 가진 탄산칼슘 형성세균의 분리와 특성 (Isolation of Fungal Deteriogens Inducing Aesthetical Problems and Antifungal Calcite Forming Bacteria from the Tunnel and Their Characteristics)

  • 박종명;박성진;김사열
    • 한국미생물·생명공학회지
    • /
    • 제39권3호
    • /
    • pp.287-293
    • /
    • 2011
  • 본 연구는 터널표면의 퇴색 및 변색을 초래할 것으로 생각되는 주요 균사형진균을 결정하고, 그 진균을 방제하기 위해 부근 장소에서 분리된 세균들이 항진균 길항능을 가지는 동시에 탄산칼슘 형성을 확인하였다. 이 균주를 이용하여 모르타르에 적용했을 때 항진균 및 압축강도 증진효과를 가진 세균자원을 확보하는데 그 목적이 있다. 터널내의 오염된 지역에서 시료를 취하여 다양한 배지를 이용하여 곰팡이, 효모 및 세균을 분리하였고, 분리된 진균의 ITS-5.8S rRNA gene sequene와 세균의 16s rDNA sequence를 이용해 부분동정을 실시했다. 분리된 미생물의 터널 내 분포를 결정하였으며, 분리된 세균 5종의 탄산칼슘 형성능력을 확인하였다. 터널내 오염지역에서 가장 널리 분포하는 곰팡이인 C. sphaerospermum KNUC253 과 감수성 시험에 널리 이용되는 공시균인 A. niger KCTC6906을 대상으로 항진균 시험을 실시하였다. 터널 분리세균 5종 모두 urea-$CaCl_2$ 고체배지에서 배양했을 때 콜로니 주변부 에서 종 특이적으로 다양한 크기와 형태의 탄산칼슘을 형성함을 확인하였다. 그 중 B. aryabhatti KNUC205는 감수성 곰팡이를 대상으로 뛰어난 항진균 길항능을 보였다.

Isolation of Surfactant-Resistant Pseudomonads from the Estuarine Surface Microlayer

  • Louvado, Antonio;Coelho, Francisco J.R.C.;Domingues, Patricia;Santos, Ana L.;Gomes, Newton C.M.;Almeida, Adelaide;Cunha, Angela
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권3호
    • /
    • pp.283-291
    • /
    • 2012
  • Bioremediation efforts often rely on the application of surfactants to enhance hydrocarbon bioavailability. However, synthetic surfactants can sometimes be toxic to degrading microorganisms, thus reducing the clearance rate of the pollutant. Therefore, surfactant-resistant bacteria can be an important tool for bioremediation efforts of hydrophobic pollutants, circumventing the toxicity of synthetic surfactants that often delay microbial bioremediation of these contaminants. In this study, we screened a natural surfactant-rich compartment, the estuarine surface microlayer (SML), for cultivable surfactant-resistant bacteria using selective cultures of sodium dodecyl sulfate (SDS) and cetyl trimethylammonium bromide (CTAB). Resistance to surfactants was evaluated by colony counts in solid media amended with critical micelle concentrations (CMC) of either surfactants, in comparison with non-amended controls. Selective cultures for surfactant-resistant bacteria were prepared in mineral medium also containing CMC concentrations of either CTAB or SDS. The surfactantresistant isolates obtained were tested by PCR for the Pseudomonas genus marker gacA gene and for the naphthalene-dioxygenase-encoding gene ndo. Isolates were also screened for biosurfactant production by the atomized oil assay. A high proportion of culturable bacterioneuston was tolerant to CMC concentrations of SDS or CTAB. The gacA-targeted PCR revealed that 64% of the isolates were Pseudomonads. Biosurfactant production in solid medium was detected in 9.4% of tested isolates, all affiliated with genus Pseudomonas. This study shows that the SML is a potential source of surfactant-resistant and biosurfactant-producing bacteria in which Pseudomonads emerge as a relevant group.

Optimization of Tannase Production by Aspergillus niger in Solid-State Packed-Bed Bioreactor

  • Rodriguez-Duran, Luis V.;Contreras-Esquivel, Juan C.;Rodriguez, Raul;Prado-Barragan, L. Arely;Aguilar, Cristobal N.
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권9호
    • /
    • pp.960-967
    • /
    • 2011
  • Tannin acyl hydrolase, also known as tannase, is an enzyme with important applications in the food, feed, pharmaceutical, and chemical industries. However, despite a growing interest in the catalytic properties of tannase, its practical use is very limited owing to high production costs. Several studies have already demonstrated the advantages of solid-state fermentation (SSF) for the production of fungal tannase, yet the optimal conditions for enzyme production strongly depend on the microbial strain utilized. Therefore, the aim of this study was to improve the tannase production by a locally isolated A. niger strain in an SSF system. The SSF was carried out in packed-bed bioreactors using polyurethane foam as an inert support impregnated with defined culture media. The process parameters influencing the enzyme production were identified using a Plackett-Burman design, where the substrate concentration, initial pH, and incubation temperature were determined as the most significant. These parameters were then further optimized using a Box-Behnken design. The maximum tannase production was obtained with a high tannic acid concentration (50 g/l), relatively low incubation temperature ($30^{\circ}C$), and unique low initial pH (4.0). The statistical strategy aided in increasing the enzyme activity nearly 1.97-fold, from 4,030 to 7,955 U/l. Consequently, these findings can lead to the development of a fermentation system that is able to produce large amounts of tannase in economical, compact, and scalable reactors.