• Title/Summary/Keyword: microbial media

Search Result 295, Processing Time 0.027 seconds

Development of Porous Media for Sewage Treatment by Pyrolysis Process of Food Wastes with Loess (음식물 쓰레기 및 황토 혼합물의 열분해를 통한 수질정화용 다공성 담체 개발)

  • Kim, Sang-Bum;Lee, Myong-Hwa;Kim, Yong-Jin;Park, Chul-Hwan;Lee, Jong-Rae;Kim, Gyung-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.289-296
    • /
    • 2007
  • Porous media for sewage treatment were developed through a pyrolysis process of food wastes with loess in the study. This work was carried out in two consecutive stages; in the first stage, new porous media were prepared through a high temperature pyrolysis process, and then the resultant media were applied to a simple lab-scale sewage treatment process in the second stage. To determine the optimum operating conditions of pyrolysis and mixing ratio of materials, physical properties such as specific surface area, porosity and compressive strength of final products were analyzed. The removal efficiencies of TOC and COD were measured to evaluate the effectiveness of resultant porous media. As a result of the experiment, we found that the best mixing ratio of food wastes to loess was 1 : 1 at $1,100^{\circ}C$. Average porosity of the developed media was 37.0%, in which pore size ranged from 1 to $20{\mu}m$, showing quite vigorous microbial activation. After immersing the media into a reactor for sewage treatment for eight days, removal efficiencies of TOC and COD were 87.3% and 85.0%, respectively.

High Hydrostatic Pressure Sterilization of Putrefactive Bacteria in Salted and Fermented Shrimp with Different Salt Content (염농도가 다른 새우젓에 존재하는 유해가능 세균의 초고압 살균)

  • Mok, Chul-Kyoon;Song, Ki-Tae
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.598-603
    • /
    • 2000
  • This study was conducted to enhance the storage stability and the wholesomeness of salted and fermented shrimp manufactured with different salt levels by high hydrostatic pressure sterilization. The effects of high hydrostatic pressure treatment on the putrefactive bacteria in the fermented shrimps were investigated and the sterilization kinetics was analyzed. The initial microbial counts of the fermented shrimp with 8%, 18% salt aged for 6 weeks at $20^{circ}C$ were $1.6{\times}10^3,\;1.4{\times}10^4$ CFU/g for bacteria grown on Vibrio selective media, $9.3{\times}10^3,\;1.7{\times}10^5$ CFU/g for bacteria grown on Staphylococcus selective media, respectively, and null for bacteria grown on Salmonella selective media. The degree of the sterilization increased with the magnitude of the pressure and the treatment time. The fermented shrimp pressurized at 6,500 atm for 10 min had no detectable bacteria grown on Vibrio and Staphylococcus selective media at $10^2$ CFU/g detecting limit. High hydrostatic pressure sterilization could be analyzed by first order reaction kinetics. The $D_P$ values of the bacteria grown on Vibrio selective media of the fermented shrimp at 18% salt were higher than those at 8% salt, while those of the bacteria grown on Staphylococcus selective media showed an inverse trend. The $z_p$ values of 8% salt fermented shrimp were higher than those of 18% salt for both bacteria grown on Vibrio selective media and Staphylococcus selective media. High hydrostatic pressure treatment could be applied for the sterilization of the fermented shrimp, and the optimum high pressure sterilization condition was 10 min treatment at 6,500 atm.

  • PDF

Diversity of Cultured and Uncultured Bacteria in the Gut of Olive Flounder Paralichthys olivaceus (넙치(Paralichthys olivaceus) 장관의 배양 및 비배양 방법에 의한 세균의 다양성)

  • Kim, Ahran;Kim, Do-Hyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.4
    • /
    • pp.447-453
    • /
    • 2015
  • We determined the optimal culture conditions for obtaining the maximum number of intestinal bacteria from the olive flounder Paralichthys olivaceus, and studied bacterial diversity using both culture-dependent and culture-independent methods. Using six culture conditions, mean bacterial numbers were greater than $10^6$ per gram of gut mucus, regardless of the medium. However, the bacterial diversity, based on colony morphology, appeared much higher on Marine agar (MA) and Zobell 2216 agar than on other media. We found eight and 17 cultured bacterial phylotypes with 99% minimum similarity in gut mucus grown on MA and tryptic soy agar, respectively. Furthermore, we used genomic DNA extracted from gut mucus to generate 78 random clones, which were grouped into 25 phylotypes. Of these, six were affiliated with Firmicutes, Actinobacteria, and Verrucomicrobia, and were not found using our culture-dependent methods. Consequently, we believe that Marine agar and Zobell 2216 agar are optimal media for culturing diverse intestinal microbes; we also discovered several novel sequences not previously recognized as part of the gut microbiota of olive flounder.

Purification and Characterization of an Indican-hydrolyzing β-glucosidase from Agrobacterium tumefaciens (Agrobacterium tumefaciens 유래 인디칸 분해활성을 갖는 β-glucosidase의 분리와 특성분석)

  • Hwang, Chang-Sun;Lee, Jin-Young;Kim, Geun-Joong
    • KSBB Journal
    • /
    • v.27 no.6
    • /
    • pp.341-346
    • /
    • 2012
  • Indican (indoxyl-${\beta}$-D-glucoside) is a colorless natural compound and can be used as a precursor for the production of indigo. This production step only require an enzyme, ${\beta}$-glucosidase, that readily screened from microbial resource by using selective media supplemented with indican as a sole carbon source. Agrobacterium tumefaciens was well grown in this media and thus presumed to produce a related enzyme. The corresponding gene, encoding a protein with a calculated molecular mass of 51 kDa, was cloned and overexpressed as MBP fusion proteins. The purified enzyme was determined to be a dimer and showed the maximum activity for indican at pH 7.0 and $40^{\circ}C$. The kinetic parameters for indican, Km and Vmax, were determined to be 1.4 mM and 373.8 ${\mu}M/min/mg$, respectively. The conversion yield of indican into indigo using this enzyme was about 1.7-1.8 folds higher than that of previously isolated enzyme from Sinorhizobium meliloti. Additionally, this enzyme was able to hydrolyze various ${\beta}$-1,4 glycoside substrates.

Enzymatic Characteristics of Laccase from White Rot Fungus, Flammulina velutipes (백색부후균(白色腐朽菌) Flammulina velutipes로 부터 추출(抽出)한 리그닌 분해효소(分解酵素)의 효소적(酵素的) 특성(特性))

  • Suh, Dal-Sun;Lee, Jae-Sung;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.36-42
    • /
    • 1986
  • The production media and the enzymatic charateristics of laccase from Flammulina velutipes were investigated. The activity of laccase during incubation reached to the maximum at the 40 days of incubation in the case of Barley straw medium. The maximum laccase activity in Barley straw medium was 5 and 16 times higher than those in Onion basic and Sawdust media, respectively. The laccase from Flammulina velutipes has the optimum pH of 6.6 and showed to be stable at relatively broad pH range. 4.5-9.5. Temperature stability showed that above 96% activity could be preserved after holding at 40$^{\circ}C$ for 40 minutes. At the above 70$^{\circ}C$, the laccase activity decreased very rapidly. The Km value of the laccase was estimated to be 28.0 mM which is much higher than that of the laccase from Pleurotus ostreatus. Organic solvents for precipitiation of the enzyme did not inactivation the laccase. Sodium azide which was added for preventing microbial deterioration affected significantly the inactivation of laccase, but this activity was recovered completely by precipitating the enzyme with acetone.

  • PDF

Antimicrobial Effect of Medical Adhesive Composed of Aldehyded Dextran and ${\varepsilon}$-Poly(L-Lysine)

  • Lee, Jeong-Hyun;Kim, Hye-Lee;Lee, Mi-Hee;Taguchi, Hideaki;Hyon, Suong-Hyu;Park, Jong-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.11
    • /
    • pp.1199-1202
    • /
    • 2011
  • Infection of surgical wounds is a severe problem. Conventional tissue reattachment methods have limits of incomplete sealing and high susceptibility to infection. Medical adhesives have several advantages over traditional tissue reattachment techniques, but still have drawbacks, such as the probability of infection, low adhesive strength, and high cytotoxicity. Recently, a new medical adhesive (new-adhesive) with high adhesive strength and low cytotoxicity, composed of aldehyded dextran and ${\varepsilon}$-poly(L-lysine), was developed. The antimicrobial activity of the new-adhesive was assayed using agar media and porcine skin. In the agar diffusion method, inoculated microorganisms that contacted the new-adhesive were inactivated, but this was not dependent on the amount of new-adhesive. Similar to the agar media results, the topical antimicrobial effect of new-adhesive was confirmed using a porcine skin antimicrobial assay, and the effect was not due to physical blocking based on comparison with the group whose wounds were wrapped.

Perspective on Rapid and Selective Method for Detecting Microbiology in Dairy Industry: A Review (낙농산업에 필요한 미생물 검사방법과 전망: 총설)

  • Chon, Jung-Whan;Kim, Hyun-Sook;Kim, Hong-Seok;Kim, Dong-Hyeon;Song, Kwang-Young;Yim, Jin-Hyuk;Choi, Dasom;Lim, Jong-Soo;Jeong, Dong-Gwan;Kim, Soo-Ki;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.119-127
    • /
    • 2015
  • To date, detection of microbial populations in dairy products has been performed using culture media, which is a time-consuming and laborious method. The recently developed chromogenic media could be more rapid and specific than classical culture media. However, the newly developed molecular-based technology can detect microbial populations with greater rapidity and sensitivity than the classical method involving culture media and chromogenic media. This molecular-based technology could provide various options for monitoring the characterization of different states of bacteria and cells. Thus, it could help upgrade the processing system of the dairy industry so as to maintain the safety and quality of dairy foods. Among the various newly developed molecular-based technologies, flow cytometry can potentially be used for monitoring microbiological populations in the dairy industry if official international standards are available for this purpose. When omics technology would have biomarker identification, it could be regarded as the rapid and sensitive analytical methods. Methods based on PCR, which has become a basic technique in microbiological research, can be developed and validated as alternative methods for quantification of dairy microorganisms. This review discusses methods for monitoring microbiological populations in dairy foods and the limitations of these studies, as well as the need for further research on such methods in the dairy industry.

  • PDF

Removal of Volatile Organic Compounds using Candida tropicalis Immobilized on Polymer Gel Media in an Airlift Loop Bioreactor (Candida tropicalis 포괄고정 담체를 적용한 Airlift Loop Bioreactor에서의 복합 휘발성유기화합물 제거)

  • NamGung, Hyeong-Kyu;Ha, Jeong-Hyub;Hwang, Sun-Jin;Song, Ji-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.8
    • /
    • pp.603-610
    • /
    • 2009
  • This research was performed to improve removal efficiency of toluene and methyl ethyl ketone (MEK) using Candida tropicalis, one of the yeast species. An airlift loop bioreactor (ALB) was employed to enhance the capability of mass transfer for toluene and MEK from the gas phase to the liquid, microbial phase. Polymer gel media made from PAC, alginate and PEG was applied for the effective immobilization of the yeast strain on the polymer gel media. The experimental results indicated that the mass transfer coefficient of toluene without polymer gel media was 1.29 $min^{-1}$ at a gas retention time of 15 sec, whereas the KLa value for toluene was increased to 4.07 $min^{-1}$ by adding the media, confirming the enhanced mass transfer of volatile organic compounds between the gas and liquid phases. The removal efficiency of toluene and MEK by using yeast-immobilized polymer gel media in the ALB was greater than 80% at different pollutant loading rates (5, 10, 19 and 37 g/$m^3$/hr for toluene, 4.5, 8.9, 17.8 and 35.1 g/$m^3$/hr for MEK). In addition, an elimination capacity test conducted by changing inlet loading rates stepwise demonstrated that maximum elimination capacities for toluene and MEK were 70.4 and 56.4 g/$m^3$/hr, respectively.

Optimal Culture Conditions for Penicillium rubefaciens NNIBRFG5039 Possessing Antimicrobial Activity (항균활성 보유 Penicillium rubefaciens NNIBRFG5039의 최적배양 조건)

  • Hwang, Hye Jin;Mun, Hye Yeon;Hwang, Buyng Su;Nam, Young Ho;Chung, Eu Jin
    • The Korean Journal of Mycology
    • /
    • v.48 no.1
    • /
    • pp.15-27
    • /
    • 2020
  • In screening for antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) KCCM 40510 and Bacillus cereus KCTC 3624, NNIBRFG5039 was isolated from the air in Sangju-si, Gyeongsangbuk-do. Based on a high sequence similarity of the internal transcribed spacer (ITS) region, NNIBRFG5039 was determined to be closely related to Penicillium rubefaciens CBS 139145. The optimal media, initial pH, and temperature for mycelial growth and antimicrobial activity of P. rubefaciens NNIBRFG5039 were determined as follows: potato dextrose broth (PDB), pH 6.5, and 30℃, respectively. Under the optimal culture conditions, maximum mycelial growth (12.4 g L-1) and antibacterial activity (7.5 mm zone of inhibition against MRSA KCCM 40510, and 5.0 mm zone of inhibition against B. cereus KCTC 3624) were observed in a 5 L stirred-tank fermenter. We also isolated the antimicrobial compound from an ethyl acetate fraction, and its chemical structure was identified as (S)-6-hydroxymellein (1) by ESI-MS, 1H-NMR, and 13C-NMR. Consequently, the extract from P. rubefaciens NNIBRFG5039 may be used in functional materials for antimicrobial-related applications.

Determination of Microbial Contamination in the Process of Rice Rolled in Dried Laver and Improvement of Shelf-life by Gamma Irradiation (김밥 제조공정에서의 미생물 오염도 평가 및 감마선 조사를 이용한 김밥의 보존안정성 향상)

  • 김동호;송현파;김재경;김정옥;이현자;변명우
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.7
    • /
    • pp.991-996
    • /
    • 2003
  • Determination of regional microbial contamination in the process of rice rolled in dried laver (Kimbab) and effects of gamma irradiation on the improvement of hygienic quality and shelf stability were investigated. Total aerobic bacterial distribution of raw materials of Kimbab were; 10$^{6}$ ∼10$^{7}$ CFU/g in dried laver, 10$^3$ CFU/g in cucumber and below 10 CFU/g in steamed rice, ham, fried egg, and salted radish. Total coliform bacteria were 10$^3$ CFU/g in dried laver and detected below detection limit (10 CFU/g) in other raw materials. And it was arithmetically calculated that the levels of total aerobic bacteria and coliform bacteria in Kimbab does not exceed 10$^{5}$ CFU/g and 10$^1$ CFU/g under the aseptic process, respectively. However, microbial contamination levels in just prepared Kimbab in a market were about 10$^{6}$ CFU/g of total aerobic and coliform bacteria. Therefore, it was considered that microbial contamination of Kimbab is mainly originated from environmental uptake during the preparation. The representative media for putrefying bacterial growth were steamed rice. Coliform bacteria were mainly increased in ham and fried egg during storage. The bacteria in dried laver were radio-resistant and survived at 3 kGy of gamma irradiation. Coliform bacteria on EMB agar plate were eliminated at the dose of 2 kGy. The sensory acceptability of 2 kGy irradiated Kimbab was stable and the Kimbab can be preserved for 24 hour at 15$^{\circ}C$. Therefore, it was considered that optimal irradiation dose for radicidation of Kimbab was 2 kGy.