• 제목/요약/키워드: microbial interactions

검색결과 150건 처리시간 0.021초

Degradation of Rice Straw by Rumen Fungi and Cellulolytic Bacteria through Mono-, Co- or Sequential- Cultures

  • Ha, J.K.;Lee, S.S.;Kim, S.W.;Han, In K.;Ushida, K.;Cheng, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권6호
    • /
    • pp.797-802
    • /
    • 2001
  • Two strains of rumen fungi (Piromyces rhizinflata B157, Orpinomyces joyonii SG4) and three strains of rumen cellulolytic bacteria (Ruminococcus albus B199, Ruminococcus flavefaciens FD1 and Fibrobacter succinogenes S85) were used as mono-cultures or combinationally arranged as co- and sequential-cultures to assess the relative contributions and interactions between rumen fungi and cellulolytic bacteria on rice straw degradation. The rates of dry matter degradation of co-cultures were similar to those of corresponding bacterial mono-cultures. Compared to corresponding sequential-cultures, the degradation of rice straw was reduced in all co-cultures (P<0.01). Regardless of the microbial species, the cellulolytic bacteria seemed to inhibit the degradation of rice straw by rumen fungi. The high efficiency of fungal cellulolysis seems to affect bacterial degradation rates.

치아우식증 유발 균주에 대한 패러다임의 변화: 생태학적 관점 (Change of Paradigms in Caries-Associated Bacteria in the Caries Process: Ecological Perspectives)

  • 김희은
    • 치위생과학회지
    • /
    • 제14권2호
    • /
    • pp.87-93
    • /
    • 2014
  • Dental plaque resides passively at a site and makes an active contribution to the maintenance of health. The bacterial composition of plaque remains relatively stable despite regular exposure to minor environmental stress. This stability, homeostasis is due to a dynamic balance of microbial interactions. However, the homeostasis can break down, leading to shifts in the balance of the microflora. This change can be a sign of initial dental caries. It is proposed that disease can be prevented or treated not only by targeting the putative pathogens but also by interfering with the processes that drive the breakdown in homeostasis. It is essential to understand the plaque as a mixed species biofilm. In this essay I reviewed an extension of the caries ecological hypothesis to explain the relation between dynamic changes in the phenotypic/genotypic properties of plaque bacteria and the demineralization and remineralization balance of the dental caries process. We will have the strategies to impact significantly on clinical practice as understanding dental biofilm.

Joint Interactions of SSB with RecA Protein on Single-Stranded DNA

  • Kim, Jong-Il
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권5호
    • /
    • pp.562-567
    • /
    • 1999
  • Single-stranded DNA binding protein (SSB) is well-characterized as having a helix-destabilizing activity. The helix-destabilizing capability of SSB has been re-examined in this study. The results of restriction endonuclease protection assays and titration experiments suggest that the stimulatory effect of SSB on strand exchange acts by melting out the secondary structure which is inaccessible to RecA protein binding; however, SSB is excluded from regions of secondary structure present in native single-stranded DNA. Complexes of SSB and RecA protein are required for eliminating the secondary structure barriers under optimal conditions for strand exchange.

  • PDF

VOCs 처리를 위한 미생물의 토양복원화 특성 (The Characteristics of Bioremediation for VOCs in Soil Column)

  • 손종렬;장명배;조광명
    • 환경위생공학
    • /
    • 제17권1호
    • /
    • pp.52-56
    • /
    • 2002
  • The study was carried out to evaluate the characteristics of biodegradation by Pseudomonas putida G7 in soil column. The reactor system was used to investigate mass transfer of VOCs as Toluene in a column of unsaturated soil. Determination of the fate of VOCs in unsaturated soil is necessary to evaluate the feasibility of natural attenuation as a VOCs remediation strategy. The objective of this study was to develop a mechanistically based mathematical model that would consider the interdependence of VOC transport, microbial activity, and sorptive interactions in a moist, unsaturated soil. Because the focus of the model was on description of natural attenuation, the advective VOCs transport that is induced in engineered remediation processes such as vapor extraction was not considered. It can be concluded that the coefficient for gas liquid mass-transfer was found to be a key parameter controlling the ability of bacteria to VOCs. Finally, it appeared that bioremediation technology of VOCs which are difficult to be decomposed by chemical methods.

Molecular and Cellular Mechanisms of Syndecans in Tissue Injury and Inflammation

  • Bartlett, Allison H.;Hayashida, Kazutaka;Park, Pyong Woo
    • Molecules and Cells
    • /
    • 제24권2호
    • /
    • pp.153-166
    • /
    • 2007
  • The syndecan family of heparan sulfate proteoglycans is expressed on the surface of all adherent cells. Syndecans interact with a wide variety of molecules, including growth factors, cytokines, proteinases, adhesion receptors and extracellular matrix components, through their heparan sulfate chains. Recent studies indicate that these interactions not only regulate key events in development and homeostasis, but also key mechanisms of the host inflammatory response. This review will focus on the molecular and cellular aspects of how syndecans modulate tissue injury and inflammation, and how syndecans affect the outcome of inflammatory diseases in vivo.

Microbial Colonization at Early Life Promotes the Development of Diet-Induced CD8αβ Intraepithelial T Cells

  • Jung, Jisun;Surh, Charles D.;Lee, You Jeong
    • Molecules and Cells
    • /
    • 제42권4호
    • /
    • pp.313-320
    • /
    • 2019
  • Intraepithelial lymphocytes (IELs) develop through the continuous interaction with intestinal antigens such as commensal microbiome and diet. However, their respective roles and mutual interactions in the development of IELs are largely unknown. Here, we showed that dietary antigens regulate the development of the majority of $CD8{\alpha}{\beta}$ IELs in the small intestine and the absence of commensal microbiota particularly during the weaning period, delay the development of IELs. When we tested specific dietary components, such as wheat or combined corn, soybean and yeast, they were dependent on commensal bacteria for the timely development of diet-induced $CD8{\alpha}{\beta}$ IELs. In addition, supplementation of intestinal antigens later in life was inefficient for the full induction of $CD8{\alpha}{\beta}$ IELs. Overall, our findings suggest that early exposure to commensal bacteria is important for the proper development of dietary antigen-dependent immune repertoire in the gut.

Context-Dependent Regulation of Type17 Immunity by Microbiota at the Intestinal Barrier

  • Begum Akuzum;June-Yong Lee
    • IMMUNE NETWORK
    • /
    • 제22권6호
    • /
    • pp.46.1-46.25
    • /
    • 2022
  • T-helper-17 (Th17) cells and related IL-17-producing (type17) lymphocytes are abundant at the epithelial barrier. In response to bacterial and fungal infection, the signature cytokines IL-17A/F and IL-22 mediate the antimicrobial immune response and contribute to wound healing of injured tissues. Despite their protective function, type17 lymphocytes are also responsible for various chronic inflammatory disorders, including inflammatory bowel disease (IBD) and colitis associated cancer (CAC). A deeper understanding of type17 regulatory mechanisms could ultimately lead to the discovery of therapeutic strategies for the treatment of chronic inflammatory disorders and the prevention of cancer. In this review, we discuss the current understanding of the development and function of type17 immune cells at the intestinal barrier, focusing on the impact of microbiota-immune interactions on intestinal barrier homeostasis and disease etiology.

Changes in Endophyte Communities across the Different Plant Compartments in Response to the Rice Blast Infection

  • Mehwish Roy;Sravanthi Goud Burragoni;Junhyun Jeon
    • The Plant Pathology Journal
    • /
    • 제40권3호
    • /
    • pp.299-309
    • /
    • 2024
  • The rice blast disease, caused by the fungal pathogen, Magnaporthe oryzae (syn. Pyricularia oryzae), poses a significant threat to the global rice production. Understanding how this disease impacts the plant's microbial communities is crucial for gaining insights into host-pathogen interactions. In this study, we investigated the changes in communities of bacterial and fungal endophytes inhabiting different compartments in healthy and diseased plants. We found that both alpha and beta diversities of endophytic communities do not change significantly by the pathogen infection. Rather, the type of plant compartment appeared to be the main driver of endophytic community structures. Although the overall structure seemed to be consistent between healthy and diseased plants, our analysis of differentially abundant taxa revealed the specific bacterial and fungal operational taxonomic units that exhibited enrichment in the root and leaf compartments of infected plants. These findings suggest that endophyte communities are robust to the changes at the early stage of pathogen infection, and that some of endophytes enriched in infected plants might have roles in the defense against the pathogen.

Antifungal Properties of Streptomyces bacillaris S8 for Biological Control Applications

  • Da-Ran Kim;Chang-Wook Jeon;Youn-Sig Kwak
    • The Plant Pathology Journal
    • /
    • 제40권3호
    • /
    • pp.322-328
    • /
    • 2024
  • Soybean (Glycine max), a crucial global crop, experiences yearly yield reduction due to diseases such as anthracnose (Colletotrichum truncatum) and root rot (Fusarium spp.). The use of fungicides, which have traditionally been employed to control these phytopathogens, is now facing challenges due to the emergence of fungicide-resistant strains. Streptomyces bacillaris S8 strain S8 is previously known to produce valinomycin t through a nonribosomal peptide synthetase (NRPS) pathway. The objective of this study was to evaluate the antifungal activity of S. bacillaris S8 against C. truncatum and Fusarium sp., assessing its efficacy against soybean pathogens. The results indicate that strain S8 effectively controlled both above-ground and underground soybean diseases, using the NRPS and NRPS-related compound, suggesting its potential as a biological control in plant-microbe interactions. These findings underscore the pivotal role of the stain S8 in fostering healthy soybean microbial communities and emphasize the significance of microbiota structure studies in unveiling potent biocontrol agents.

Ruminal ciliates as modulators of the rumen microbiome

  • Tansol Park
    • Animal Bioscience
    • /
    • 제37권2_spc호
    • /
    • pp.385-395
    • /
    • 2024
  • Ruminal ciliates are a fundamental constituent within the rumen microbiome of ruminant animals. The complex interactions between ruminal ciliates and other microbial guilds within the rumen ecosystems are of paramount importance for facilitating the digestion and fermentation processes of ingested feed components. This review underscores the significance of ruminal ciliates by exploring their impact on key factors, such as methane production, nitrogen utilization efficiency, feed efficiency, and other animal performance measurements. Various methods are employed in the study of ruminal ciliates including culture techniques and molecular approaches. This review highlights the pressing need for further investigations to discern the distinct roles of various ciliate species, particularly relating to methane mitigation and the enhancement of nitrogen utilization efficiency. The promotion of establishing robust reference databases tailored specifically to ruminal ciliates is encouraged, alongside the utilization of genomics and transcriptomics that can highlight their functional contributions to the rumen microbiome. Collectively, the progressive advancement in knowledge concerning ruminal ciliates and their inherent biological significance will be helpful in the pursuit of optimizing rumen functionality and refining animal production outcomes.