• Title/Summary/Keyword: microbial interactions

Search Result 150, Processing Time 0.023 seconds

Microbial Community Composition in the Marine Sediments of Jeju Island: Next-Generation Sequencing Surveys

  • Choi, Heebok;Koh, Hyeon-Woo;Kim, Hongik;Chae, Jong-Chan;Park, Soo-Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.883-890
    • /
    • 2016
  • Marine sediments are a microbial biosphere with an unknown physiology, and the sediments harbor numerous distinct phylogenetic lineages of Bacteria and Archaea that are at present uncultured. In this study, the structure of the archaeal and bacterial communities was investigated in the surface and subsurface sediments of Jeju Island using a next-generation sequencing method. The microbial communities in the surface sediments were distinct from those in the subsurface sediments; the relative abundance of sequences for Thaumarchaeota, Actinobacteria, Bacteroides, Alphaproteobacteria, and Gammaproteobacteria were higher in the surface than subsurface sediments, whereas the sequences for Euryarchaeota, Acidobacteria, Firmicutes, and Deltaproteobacteria were relatively more abundant in the subsurface than surface sediments. This study presents detailed characterization of the spatial distribution of benthic microbial communities of Jeju Island and provides fundamental information on the potential interactions mediated by microorganisms with the different biogeochemical cycles in coastal sediments.

Utilization of Steam-treated Oil Palm Fronds in Growing Saanen Goats: II. Supplementation with Energy and Urea

  • Paengkoum, Pramote;Liang, J.B.;Jelan, Z.A.;Basery, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.11
    • /
    • pp.1623-1631
    • /
    • 2006
  • The objective of this study was to evaluate the effect of protein and energy on goats fed oil palm fronds (OPF) as roughages. Twenty-four male Saanen goats aged between 7 and 8 months and weighing $23.4{\pm}1.6kg$ were used in a $2{\times}3$ factorial design. Factors were three levels of urea (3%, 4% or 5%) and two levels of energy (low energy (LE) or high energy (HE)). On average, all parameters measured, including dry matter intake (DMI), nutrient digestibility, digestible nutrient intakes, ruminal ammonia-N ($NH_3$-N), ruminal total volatile fatty acid (total VFA) and individual VFA concentrations (mM/L), microbial N supply, P/E ratio and N retention were higher for HE compared to LE diets. Significant (p<0.05) interactions were found between levels of urea and energy for nonstructural carbohydrate (NSC) and energy (DE) digestibilities, ruminal $NH_3$-N and total VFA concentrations. HE diets had higher N absorption and retention than LE diets. Interactions between urea and energy for plasma urea nitrogen (PUN), heat production (HP), and urine and faeces N excretion were significantly lower (p<0.05) for the HE diets than those recorded for the LE diets. The results indicated that supplementation of energy enhanced utilization of urea and resulted in higher animal performance as a consequence of improved ruminal fermentation, microbial yield and N balance. However, the optimal level of urea supplementation remained at 3% in the HE diet.

Microbial Removal Using Layered Double Hydroxides and Iron (Hydr)oxides Immobilized on Granular Media

  • Park, Jeong-Ann;Lee, Chang-Gu;Park, Seong-Jik;Kim, Jae-Hyeon;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.149-156
    • /
    • 2010
  • The objective of this study was to investigate microbial removal using layered double hydroxides (LDHs) and iron (hydr)oxides (IHs) immobilized onto granular media. Column experiments were performed using calcium alginate beads (CA beads), LDHs entrapped in CA beads (LDH beads), quartz sand (QS), iron hydroxide-coated sand (IHCS) and hematite-coated sand (HCS). Microbial breakthrough curves were obtained by monitoring the effluent, with the percentage of microbial removal and collector efficiency then quantified from these curves. The results showed that the LDH beads were ineffective for the removal of the negatively-charged microbes (27.7% at 1 mM solution), even though the positively-charged LDHs were contained on the beads. The above could be related to the immobilization method, where LDH powders were immobilized inside CA beads with nano-sized pores (about 10 nm); therefore, micro-sized microbes (E. coli = 1.21 ${\mu}m$) could not diffuse through the pores to come into contact with the LDHs in the beads, but adhere only to the exterior surface of the beads via polymeric interaction. IHCS was the most effective in the microbial removal (86.0% at 1 mM solution), which could be attributed to the iron hydroxide coated onto the exterior surface of QS had a positive surface charge and, therefore, effectively attracted the negatively-charged microbes via electrostatic interactions. Meanwhile, HCS was far less effective (35.6% at 1 mM solution) than IHCS because the hematite coated onto the external surface of QS is a crystallized iron oxide with a negative surface charge. This study has helped to improve our knowledge on the potential application of functional granular media for microbial removal.

Effects of Dietary Lysine and Microbial Phytase on Growth Performance and Nutrient Utilisation of Broiler Chickens

  • Selle, P.H.;Ravindran, V.;Ravindran, G.;Bryden, W.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.7
    • /
    • pp.1100-1107
    • /
    • 2007
  • The effects of offering broilers phosphorus-adequate diets containing 10.0 and 11.8 g/kg lysine, without and with 500 FTU/kg exogenous phytase, on growth performance and nutrient utilisation were determined. Each of the four experimental diets was offered to 6 replicates of 10 birds from 7 to 28 days of age. Effects of treatment on performance, apparent metabolisable energy, apparent ileal digestibility of amino acids and bone mineralisation were examined. Both additional lysine and phytase supplementation improved (p<0.05) weight gain and feed efficiency, with interactions (p<0.05), as phytase responses were more pronounced in lysine-deficient diets. Phytase improved (p<0.05) apparent metabolisable energy, which was independent of the dietary lysine status. Bone mineralisation, as determined by percentage toe ash, was not affected by treatment, which confirms the phosphorus-adequate status of the diets. Phytase increased (p<0.05) the apparent ileal digestibility of the sixteen amino acids assessed. Unexpectedly, however, the dietary addition of 1.8 g/kg lysine, as lysine monohydrochloride, increased (p<0.05) the ileal digestibility of lysine per se and also that of isoleucine, methionine, phenylalanine, valine, aspartic acid, glutamic acid and tyrosine. In addition, there were significant interactions (p<0.05) between additional lysine and phytase supplementation for arginine, lysine, phenylalanine, aspartic acid, glutamic acid, glycine and serine digestibilities, with the effects of phytase being more pronounced in lysine-deficient diets. The possible mechanisms underlying the increases in amino acid digestibility in response to additional lysine and the interactions between lysine and microbial phytase in this regard are discussed. Also, consideration is given to the way in which phytate and phytase may influence ileal digestibility of amino acids.

Chemical signalling within the rumen microbiome

  • Katie Lawther;Fernanda Godoy Santos;Linda B Oyama;Sharon A Huws
    • Animal Bioscience
    • /
    • v.37 no.2_spc
    • /
    • pp.337-345
    • /
    • 2024
  • Ruminants possess a specialized four-compartment forestomach, consisting of the reticulum, rumen, omasum, and abomasum. The rumen, the primary fermentative chamber, harbours a dynamic ecosystem comprising bacteria, protozoa, fungi, archaea, and bacteriophages. These microorganisms engage in diverse ecological interactions within the rumen microbiome, primarily benefiting the host animal by deriving energy from plant material breakdown. These interactions encompass symbiosis, such as mutualism and commensalism, as well as parasitism, predation, and competition. These ecological interactions are dependent on many factors, including the production of diverse molecules, such as those involved in quorum sensing (QS). QS is a density-dependent signalling mechanism involving the release of autoinducer (AIs) compounds, when cell density increases AIs bind to receptors causing the altered expression of certain genes. These AIs are classified as mainly being N-acyl-homoserine lactones (AHL; commonly used by Gram-negative bacteria) or autoinducer-2 based systems (AI-2; used by Gram-positive and Gram-negative bacteria); although other less common AI systems exist. Most of our understanding of QS at a gene-level comes from pure culture in vitro studies using bacterial pathogens, with much being unknown on a commensal bacterial and ecosystem level, especially in the context of the rumen microbiome. A small number of studies have explored QS in the rumen using 'omic' technologies, revealing a prevalence of AI-2 QS systems among rumen bacteria. Nevertheless, the implications of these signalling systems on gene regulation, rumen ecology, and ruminant characteristics are largely uncharted territory. Metatranscriptome data tracking the colonization of perennial ryegrass by rumen microbes suggest that these chemicals may influence transitions in bacterial diversity during colonization. The likelihood of undiscovered chemicals within the rumen microbial arsenal is high, with the identified chemicals representing only the tip of the iceberg. A comprehensive grasp of rumen microbial chemical signalling is crucial for addressing the challenges of food security and climate targets.

Analysis of Microbial Community Change in Ganjang According to the Size of Meju (메주의 크기에 따른 간장의 미생물 군집 변화 양상 분석)

  • Ho Jin Jeong;Gwangsu Ha;Ranhee Lee;Do-Youn Jeong;Hee-Jong Yang
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.453-464
    • /
    • 2024
  • The fermentation of ganjang is known to be greatly influenced by the microbial communities derived from its primary ingredients, meju and sea salt. This study investigated the effects of changes in meju size on the distribution and correlation of microbial communities in ganjang fermentation, to enhance its fermentation process. Ganjang was prepared using whole meju and meju divided into thirds, and samples were collected at 7-day intervals over a period of 28 days for microbial community analysis based on 16S rRNA gene sequencing. At the genus level, during fermentation, ganjang made with whole meju exhibited a dominance of Chromohalobacter (day 7), Pediococcus (day 14), Bacillus (day 21), and Pediococcus (day 28), whereas ganjang made with meju divided into thirds consistently showed a Pediococcus predominance over the 28 days. Beta-diversity analysis of microbial communities in ganjang with different meju sizes revealed significant separation of microbial communities at fermentation days 7 and 14 but not at days 21 and 28 across all experimental groups. The linear discriminant analysis effect size (LEfSe) was determined to identify biomarkers contributing to microbial community differences at days 7 and 14, showing that on day 7, potentially halophilic microbes such as Gammaproteobacteria, Firmicutes, Oceanospirillales, Halomonadaceae, Bacilli, and Chromohalobacter were prominent, whereas on day 14, lactic acid bacteria such as Pediococcus acidilactici, Lactobacillaceae, Pediococcus, Bacilli, Leuconostocaceae, and Weissella were predominant. Furthermore, correlation analysis of microbial communities at the genus and species levels revealed differences in correlation patterns between meju sizes, suggesting that meju size may influence microbial interactions within ganjang.

The Role of Immune Response in Periodontal Disease (치주질환의 면역학)

  • Kim, Kack-Kyun
    • IMMUNE NETWORK
    • /
    • v.3 no.4
    • /
    • pp.261-267
    • /
    • 2003
  • The periodontal diseases are infections caused by bacteria in oral biofilm, a gelatinous mat commonly called dental plaque, which is a complex microbial community that forms and adhere to tooth surfaces. Host immune-pathogen interaction in periodontal disease appears to be a complex process, which is regulated not only by the acquired immunity to deal with ever-growing and -invading microorganisms in periodontal pockets, but also by genetic and/or environmental factors. However, our understanding of the pathogenesis in human periodontal diseases is limited by the lack of specific and sensitive tools or models to study the complex microbial challenges and their interactions with the host's immune system. Recent advances in cellular and molecular biology research have demonstrated the importance of the acquired immune system in fighting the virulent periodontal pathogens and in protecting the host from developing further devastating conditions in periodontal infections. The use of genetic knockout and immunodeficient mouse strains has shown that the acquired immune response, in particular, $CD4^+$ T-cells plays a pivotal role in controlling the ongoing infection, the immune/inflammatory responses, and the subsequent host's tissue destruction.

Respiratory Microbiome in Children (소아의 호흡기 미생물군 유전체)

  • Kim, Dong Hyun
    • Pediatric Infection and Vaccine
    • /
    • v.26 no.3
    • /
    • pp.129-139
    • /
    • 2019
  • The human respiratory tract hosts both pathogenic and commensal bacteria. The development of well-conserved 16S rRNA sequencing and culture-independent techniques has enabled many achievements in the study of the human microbiome. Microbial composition of the respiratory tract in early childhood has been shown to correlate to respiratory health in later stages of life. This review highlights current understandings of respiratory microbiota development in healthy children, examples of microbial interactions, impacts on the host immune system, and the relationship between respiratory tract microbiome and respiratory health.

Potential of combining natural-derived antioxidants for improving broiler meat shelf-life - A review

  • Andiswa Ntonhle Sithole;Vuyisa Andries Hlatini;Michael Chimonyo
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1305-1313
    • /
    • 2023
  • Synthetic antioxidants have shown adverse effects on consumers. The review, thus, aims to assess the effect of marinating broiler meat with plant leaves-derived antioxidants potential for improving shelf-life and human health. Broiler meat loss and waste due to spoilage is more than three million kg annually, thus, extending shelf-life by reducing initial microbial load and autoxidation is essential. Adding various antioxidants would reduce oxidation of protein and fatty acids improving nutritional shelf-life through synergic interactions. Antioxidant synergetic effects also improves reduction in microbiota proliferation leading to the delayed development of off flavours and deterioration of meat colour. To reduce initial microbial load and autoxidation effects, the inclusion of polyphenols and antioxidants from varying sources by mixing various antioxidants would lead to improved synergic effects.

Effects of Microbial Communication on The Growth of Periodontopathogens

  • Lee, Chung-Koo;Baek, Dong-Heon
    • International Journal of Oral Biology
    • /
    • v.35 no.4
    • /
    • pp.197-202
    • /
    • 2010
  • Most oral microorganisms exist as biofilms which initiate formation via the attachment of an early colonizer to host proteins on the tooth surface. Fusobacterium nucleatum act as a bridge between early and late colonizers. Dental biofilms eventually comprise dental pathogens such as Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia. To evaluate the effects of mutual interactions between oral bacteria on the growth of biofilms, periodontopathogens were co-cultured with a $0.4\;{\mu}m$ barrier. Streptococcus gordonii inhibited the growth of F. nucleatum and periodontopathogens. However, F. nucleatum, P. gingivalis and T. denticola activated the growth of other bacteria. A co-culture system of early and late colonizers could be a useful tool to further understand bacterial interactions during the development of dental biofilm.