• Title/Summary/Keyword: microbial interactions

검색결과 150건 처리시간 0.025초

Soil water retention and vegetation survivability improvement using microbial biopolymers in drylands

  • Tran, An Thi Phuong;Chang, Ilhan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • 제17권5호
    • /
    • pp.475-483
    • /
    • 2019
  • Vegetation cover plays a vital role in stabilizing the soil structure, thereby contributing to surface erosion control. Surface vegetation acts as a shelterbelt that controls the flow velocity and reduces the kinetic energy of the water near the soil surface, whereas vegetation roots reinforce the soil via the formation of root-particle interactions that reduce particle detachment. In this study, two vegetation-testing trials were conducted. The first trial was held on cool-season turfgrasses seeded in a biopolymer-treated site soil in an open greenhouse. At the end of the test, the most suitable grass type was suggested for the second vegetation test, which was conducted in an environmental control chamber. In the second test, biopolymers, namely, starch and xanthan gum hydrogels (pure starch, pure xanthan gum, and xanthan gum-starch mixtures), were tested as soil conditioners for improving the water-holding capacity and vegetation growth in sandy soils. The results support the possibility that biopolymer treatments may enhance the survival rate of vegetation under severe drought environments, which could be applicable for soil stabilization in arid and semiarid regions.

Biogenic Volatile Compounds for Plant Disease Diagnosis and Health Improvement

  • Sharifi, Rouhallah;Ryu, Choong-Min
    • The Plant Pathology Journal
    • /
    • 제34권6호
    • /
    • pp.459-469
    • /
    • 2018
  • Plants and microorganisms (microbes) use information from chemicals such as volatile compounds to understand their environments. Proficiency in sensing and responding to these infochemicals increases an organism's ecological competence and ability to survive in competitive environments, particularly with regard to plant-pathogen interactions. Plants and microbes acquired the ability to sense and respond to biogenic volatiles during their evolutionary history. However, these signals can only be interpreted by humans through the use of state-of the-art technologies. Newly-developed tools allow microbe-induced plant volatiles to be detected in a rapid, precise, and non-invasive manner to diagnose plant diseases. Beside disease diagnosis, volatile compounds may also be valuable in improving crop productivity in sustainable agriculture. Bacterial volatile compounds (BVCs) have potential for use as a novel plant growth stimulant or as improver of fertilizer efficiency. BVCs can also elicit plant innate immunity against insect pests and microbial pathogens. Research is needed to expand our knowledge of BVCs and to produce BVC-based formulations that can be used practically in the field. Formulation possibilities include encapsulation and sol-gel matrices, which can be used in attract and kill formulations, chemigation, and seed priming. Exploitation of biogenic volatiles will facilitate the development of smart integrated plant management systems for disease control and productivity improvement.

TNF in Human Tuberculosis: A Double-Edged Sword

  • Jae-Min Yuk;Jin Kyung Kim;In Soo Kim;Eun-Kyeong Jo
    • IMMUNE NETWORK
    • /
    • 제24권1호
    • /
    • pp.4.1-4.19
    • /
    • 2024
  • TNF, a pleiotropic proinflammatory cytokine, is important for protective immunity and immunopathology during Mycobacterium tuberculosis (Mtb) infection, which causes tuberculosis (TB) in humans. TNF is produced primarily by phagocytes in the lungs during the early stages of Mtb infection and performs diverse physiological and pathological functions by binding to its receptors in a context-dependent manner. TNF is essential for granuloma formation, chronic infection prevention, and macrophage recruitment to and activation at the site of infection. In animal models, TNF, in cooperation with chemokines, contributes to the initiation, maintenance, and clearance of mycobacteria in granulomas. Although anti-TNF therapy is effective against immune diseases such as rheumatoid arthritis, it carries the risk of reactivating TB. Furthermore, TNF-associated inflammation contributes to cachexia in patients with TB. This review focuses on the multifaceted role of TNF in the pathogenesis and prevention of TB and underscores the importance of investigating the functions of TNF and its receptors in the establishment of protective immunity against and in the pathology of TB. Such investigations will facilitate the development of therapeutic strategies that target TNF signaling, which makes beneficial and detrimental contributions to the pathogenesis of TB.

- Invited Review - Hydrogen production and hydrogen utilization in the rumen: key to mitigating enteric methane production

  • Roderick I. Mackie;Hyewon Kim;Na Kyung Kim;Isaac Cann
    • Animal Bioscience
    • /
    • 제37권2_spc호
    • /
    • pp.323-336
    • /
    • 2024
  • Molecular hydrogen (H2) and formate (HCOO-) are metabolic end products of many primary fermenters in the rumen ecosystem. Both play a vital role in fermentation where they are electron sinks for individual microbes in an anaerobic environment that lacks external electron acceptors. If H2 and/or formate accumulate within the rumen, the ability of primary fermenters to regenerate electron carriers may be inhibited and microbial metabolism and growth disrupted. Consequently, H2- and/or formate-consuming microbes such as methanogens and possibly homoacetogens play a key role in maintaining the metabolic efficiency of primary fermenters. There is increasing interest in identifying approaches to manipulate the rumen ecosystem for the benefit of the host and the environment. As H2 and formate are important mediators of interspecies interactions, an understanding of their production and utilization could be a significant starting point for the development of successful interventions aimed at redirecting electron flow and reducing methane emissions. We conclude by discussing in brief ruminant methane mitigation approaches as a model to help understand the fate of H2 and formate in the rumen ecosystem.

The Role of Plasmacytoid Dendritic Cells in Gut Health

  • Hye-Yeon Won;Ju-Young Lee;Dahye Ryu;Hyung-Taek Kim;Sun-Young Chang
    • IMMUNE NETWORK
    • /
    • 제19권1호
    • /
    • pp.6.1-6.14
    • /
    • 2019
  • Plasmacytoid dendritic cells (pDCs) are a unique subset of cells with different functional characteristics compared to classical dendritic cells. The pDCs are critical for the production of type I IFN in response to microbial and self-nucleic acids. They have an important role for host defense against viral pathogen infections. In addition, pDCs have been well studied as a critical player for breaking tolerance to self-nucleic acids that induce autoimmune disorders such as systemic lupus erythematosus. However, pDCs have an immunoregulatory role in inducing the immune tolerance by generating Tregs and various regulatory mechanisms in mucosal tissues. Here, we summarize the recent studies of pDCs that focused on the functional characteristics of gut pDCs, including interactions with other immune cells in the gut. Furthermore, the dynamic role of gut pDCs will be investigated with respect to disease status including gut infection, inflammatory bowel disease, and cancers.

Effect of Feeding Rubber Seed Kernel and Palm Kernel Cake in Combination on Nutrient Utilization, Rumen Fermentation Characteristics, and Microbial Populations in Goats Fed on Briachiaria humidicola Hay-based Diets

  • Chanjula, P.;Siriwathananukul, Y.;Lawpetchara, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권1호
    • /
    • pp.73-81
    • /
    • 2011
  • Six male crossbred (Thai Native${\times}$Anglo Nubian) goats, with an average initial weight of $22{\pm}2\;kg$, were randomly assigned according to a $3{\times}2$ factorial arrangement in a $6{\times}6$ Latin square design with a 21-d period to evaluate the effect of feeding rubber seed kernel (RSK) and palm kernel cake (PKC) in combination on nutrient utilization, rumen fermentation characteristics, and nitrogen utilization. The dietary treatments were as follows: i) concentrate containing 0% RSK and 20% PKC ($T_1$), ii) 0% RSK and 30% PKC ($T_2$), iii) 20% RSK and 20% PKC ($T_3$), iv) 20% RSK and 30% PKC ($T_4$), v) 30% RSK and 20% PKC ($T_5$), and vi) 30% RSK and 30% PKC ($T_6$). During the experiment, signal hay was given on an ad libitum basis as the roughage. It was found that RSK levels and PKC levels had no interaction effects on feed intake, apparent digestibility, $NH_3$-N, blood metabolites, VFA concentrations, and nitrogen utilization, but there were interactions between RSK levels and PKC levels with respect to total DMI (kg/d) and total VFA concentrations, and goats receiving 30% RSK had lower values (p<0.05) than those receiving 0 and 20% RSK, respectively. Feeding different PKC levels did not affect (p>0.05) feed intake, digestibility, rumen fermentation patterns, blood metabolites, and nitrogen utilization. However, increasing RSK levels (>20%) resulted in a slightly lower daily DMI (% BW and g/kg $BW^{0.75}$), apparent digestibility (NDF and ADF), total N intake, and N excretion than in goats fed on 0 and 20% RSK. BUN, blood glucose, and propionate were variable among treatment and were highest in 0% RSK with the 20% PKC fed group having values which were higher than those in other groups. However, there were no differences (p>0.05) among treatments with respect to N retention, PD output, and microbial N supply. Based on this study, RSK levels up to 20% and PKC at 20-30% in concentrate could be efficiently utilized for goats fed on signal hay.

가금 원료사료의 새로운 엽산 분석방법과 어린 육계의 엽산과 메티오닌의 요구량에 관한 연구 (Studies on the Folic Acid and Methionine Requirements for Young Broiler Chicks Including New Analytical Methods for Folic Acid in Poultry Feedstuffs)

  • 류경선;박강희;신원집
    • 한국가금학회지
    • /
    • 제22권3호
    • /
    • pp.179-188
    • /
    • 1995
  • In Experiment 1, microbial assays were conducted on 57 feed ingredient samples to determine the content of total folic acid using Lactobacillus casei(ATCC 7469). Folic acid contents of feed samples pretreated with conjugase, ${\alpha}$-amylase, and a mixture of protease(Pronase)were corn, 09${\pm}$1.18($\pi$g${\pm}$SD); fish meal, 23.05${\pm}$1.27; milo, 29.34${\pm}$0.55; bakery meal, 25.80${\pm}$6.93; meat and bone meal, 56.76${\pm}$4.97; wheat middlings, 85.14${\pm}$2.56; and soybean meal, 193.97${\pm}$3.98. Experiments 2 and 3 were conducted to determine the effects of dietary supplemental folic acid and methionine on the performance of starting broiler chicks for 18 days. Four levels of dietary folic acid(0.24. 0.54,1.14 and 2.34mg/kg) and four levels of dietary methionine(0.45, 0.53,0.61, and 0.69%) were fed in a factorial design. The basal diet was based on corn, isolated soybean protein, meat and bone meal, and fish meal. It contained adequate amounts of all nutrients except methionine and folic acid in both experiments. Increased growth rate was observed in chicks fed the basal diet supplemented with either folic acid or methionine. Total dietary folic acid and methionine plus cysteine requirements for optimum growth were estimated to be 1.80 mg/kg and 0.89% in Experiment 2, and 1.47 mg/kg and 0.91% in Experiment 3, respectively. There were interactions between dietary folic acid and methionine on weight gain in both experiments. Chicks fed diets containing 2.34 mg folic acid /kg tended to display slow growth rate in both experiments. There was a significant linear feed conversion response to folic acid in Experiment 2, and a significant quadratic feed conversion resuonse to methionine in Experiment 3. There were both linear and quadratic liver folic acid responses to dietary folic acid in both experiments. There was no indication that dietary methionine had any effect on liver folic acid content. The incidence of tibial dyschondroplasia increased with increasing supplemental methionine, but were no significant differences detected at 5% level.

  • PDF

Comparison of Microbial Diversity and Composition in the Jejunum and Colon of Alcohol-Dependent Rats

  • Fan, Yang;Ya-E, Zhao;Ji-dong, Wei;Yu-fan, Lu;Ying, Zhang;Ya-lun, Sun;Meng-Yu, Ma;Rui-ling, Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권11호
    • /
    • pp.1883-1895
    • /
    • 2018
  • Alcohol dependence is a global public health problem, yet the mechanisms of alcohol dependence are incompletely understood. The traditional view has been that ethanol alters various neurotransmitters and their receptors in the brain and causes the addiction. However, an increasing amount of experimental evidence suggests that gut microbiota also influence brain functions via gut-to-brain interactions, and may therefore induce the development of alcohol use disorders. In this study, a rat model of alcohol dependence and withdrawal was employed, the gut microbiota composition was analyzed by high-throughput 16S rRNA gene sequencing, and the metagenome function was predicted by PICRUSt software. The results suggested that chronic alcohol consumption did not significantly alter the diversity and richness of gut microbiota in the jejunum and colon, but rather markedly changed the microbiota composition structure in the colon. The phyla Bacteroidetes and eight genera including Bacteroidales S24-7, Ruminococcaceae, Parabacteroides, Butyricimonas, et al were drastically increased, however the genus Lactobacillus and gauvreauii in the colon were significantly decreased in the alcohol dependence group compared with the withdrawal and control groups. The microbial functional prediction analysis revealed that the proportions of amino acid metabolism, polyketide sugar unit biosynthesis and peroxisome were significantly increased in the AD group. This study demonstrated that chronic alcohol consumption has a dramatic effect on the microbiota composition structure in the colon but few effects on the jejunum. Inducement of colonic microbiota dysbiosis due to alcohol abuse seems to be a factor of alcohol dependence, which suggests that modulating colonic microbiota composition might be a potentially new target for treating alcohol addiction.

토양조건에 따른 몇가지 식물병원균의 포자발아와 토양정균 현상 (Spore Germination of Some Plant Pathogenic Fungi under Different Soil Conditions in Relation to Soil Fungistasis)

  • 이민웅;최혜정;심재욱
    • 한국식물병리학회지
    • /
    • 제1권3호
    • /
    • pp.157-164
    • /
    • 1985
  • 인삼 주요 재배지인 금산, 괴산, 풍기 등 3곳의 토양조건과 토양에 따른 미생물분포, 근부병의 발병상태와 관련, 포자발아에 미치는 영향 등에 대하여 실험한 결과, 괴산 재작지 토양은 Ca와 Mg 함량이 높고, 유기물과 인의 함량은 낮고, K의 함량은 풍기 재작지에 가장 높고 기타에서는 큰 차이가 없다. 토성은 괴산 초작지가 시르트식양토이고, 기타는 시프트양토이었다. 액체배지에서 균의 포자발아율은 증유수에서 가장 높았고, 다음이 pfeffer액이며 토양침출액은 가장 낮은 발아율을 나타냈다. 세균은 금산 재작지에 많았고 사상균은 금산과 풍기의 재작지에 많았다. 방사균은 괴산과 풍기의 초작지에 많았으며, 기타 지역에서는 차이가 없었다. 토양내 세균과 사상균의 분포가 많은 토양조건에서 Fusarium solani, F. oxysporum, F. moniliforme 및 Alternaria panax의 4종 균에 미치는 정균현상은 일반적으로 미생물수의 다소에 따라 민감하고, 개량물질이 정균현상에 영향을 준 것은 마늘대, 분쇄콩, 인삼잎 등이고, 정균현상을 해소시킨 물질은 밀짚, 보리짚이며 토양조건에 따라 약간의 차이가 있다.

  • PDF

미생물혼합제제 처리가 토양의 미생물상과 화학적 특성 및 시설 채소 생육에 미치는 영향 (Effect of Microorganism Mixture Application on the Microflora and the Chemical Properties of Soil and the Growth of Vegetables in Greenhouse)

  • 류일환;정수지;한성수
    • 한국환경농학회지
    • /
    • 제31권4호
    • /
    • pp.368-374
    • /
    • 2012
  • BACKGROUND: The urgency of feeding the world's growing population while combating soil pollution, salinization and desertification requires suitable biotechnology not only to improve crop productivity but also to improve soil health through interactions of soil nutrient and soil microorganism. Interest in the utilization of microbial fertilizer has increased. A principle of nature farming is to produce abundant and healthy crops without using chemical fertilizer and pesticides, and without interrupting the natural ecosystem. Beneficial microorganisms may provide supplemental nutrients in the soil, promote crop growth, and enhance plant resistance against pathogenic microorganisms. We mixed beneficial microorganisms such as Bacillus sp. Han-5 with anti-fungal activities, Trichoderma harziaum, Trichoderma longibrachiatum with organic material degrading activity, Actinomycetes bovis with antibiotic production and Pseudomonas sp. with nitrogen fixation. This study was carried out to investigate the mixtures on the soil microflora and soil chemical properties and the effect on the growth of lettuce and cucumber under greenhouse conditions. METHODS AND RESULTS: The microbial mixtures were used with each of organic fertilizer, swine manure and organic+swine manure and compared in regard to changes in soil chemical properties, soil microflora properties and crop growth. At 50 days after the treatment of microorganism mixtures, the pH improved from 5.8 to 6.3, and the EC, $NO_3$-Na and K decreased by 52.4%, 60.5% and 29.3%, respectively. The available $P_2O_5$ and $SiO_2$ increased by 25.9% and 21.2%, respectively. Otherwise, the population density of fluorescent Pseudomonas sp. was accelerated and the growth of vegetables increased. Moreover, the population density of E. coli and Fusarium sp., decreased remarkably. The ratio of bacteria to fungi (B/F) and the ratio of Actinomycetes bovis to fungi (A/F) increased 2.3 (from 272.2 to 624.4) and 1.7 times (from 38.3 to 64), respectively. Furthermore, the growth and yield of cucumber and lettuce significantly increased by the treatment of microorganism mixtures. CONCLUSION(S): These results suggest that the treatment of microorganism mixtures improved the chemical properties and the microflora of soil and the crop growth. Therefore, it is concluded that the microorganism mixtures could be good alternative soil amendments to restore soil nutrients and soil microflora.