• Title/Summary/Keyword: microbial indicators

Search Result 68, Processing Time 0.027 seconds

EVALUATION OF MICROBIAL RISK IN SOIL AMENDED WITH ORGANIC FERTILIZERS FROM STABILIZED SWINE MANURE WASTE

  • Han, Il;Lee, Young-Shin;Park, Joon-Hong
    • Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.129-135
    • /
    • 2007
  • This study evaluated microbial risk that could develop within soil microbial communities after amended with organic fertilizers from stabilized swine manure waste. For this purpose, we assessed the occurrences and competitiveness of antibiotic resistance and pathogenicity in soil microbial communities that were amended with swine manure wastes stabilized by a traditional lagoon fermentation process and an autothermal thermophilic aerobic digestion process, respectively. According to laboratory cultivation detection analysis, soil applications of the stabilized organic fertilizers resulted in increases in absolute abundances of antibiotic resistant bacteria and of two tested pathogenic bacteria indicators. The increase in occurrences might be due to the overall growth of microbial communities by the supplement of nutrients from the fertilizers. Meanwhile, the soil applications were found to reduce competitiveness for various types of antibiotic resistant bacteria in the soil microbial communities, as indicated by the decrease in relative abundances (of total viable heterotrophic bacteria). However, competitiveness of pathogens in response to the fertilization was pathogens-specific, since the relative abundance of Staphylococcus was decreased by the soil applications, while the relative abundance of Salmonella was increased. Further testes revealed that no MAR (multiple antibiotic resistance) occurrence was detected among cultivated pathogen colonies. These findings suggest that microbial risk in the soil amended with the fertilizers may not be critical to public health. However, because of the increased occurrences of antibiotic resistance and pathogenicity resulted from the overall microbial growth by the nutrient supply from the fertilizers, potential microbial risk could not be completely ruled out in the organic-fertilized soil samples.

Long-term Effects of Inorganic Fertilizer and Compost Application on Rice Sustainability in Paddy Soil

  • Lee, Chang Hoon;Park, Chang Young;Jung, Ki Youl;Kang, Seong Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.3
    • /
    • pp.223-229
    • /
    • 2013
  • Sustainability index was calculated to determine the best management for rice productivity under long-term inorganic fertilizer management's practices. It is based on nutrient index, microbiological index and crop index related to sustainability as soil function. Indicators for calculating sustainability index were selected by the comparison of soil properties and rice response in paddy soil with fertilization. Total twenty two indicators were determined to assess nutrient index, microbiological index and crop index in order to compare the effect of different fertilization. The indices were applied to assess the sustainability with different inorganic fertilizer treatments such as control, N, NK, NP, NPK, NPK+Si, and NPK+Compost. The long-term application of compost with NPK was the highest sustainability index value because it increased nutrient index, microbial index and crop index. The use of chemical fertilizers resulted in poor soil microbial index and crop index, but the treatments like NP, NPK, and NPK+Si were maintained sustainability in paddy soil. These results indicate that application of organic and chemical fertilizer could be a good management to improve rice sustainability in paddy soil.

Microbial Communities and Diversities in a Full-Scale Mesophilic Anaerobic Digester Treating Sewage Sludge (하수슬러지 처리 실규모 중온 혐기성 소화조 미생물 군집 및 다양성 조사)

  • Minjae Kim;Suin Park;Juyun Lee;Hyebin Lee;Seonmin Kang;Hyokwan Bae;Joonyeob Lee
    • Journal of Environmental Science International
    • /
    • v.31 no.12
    • /
    • pp.1051-1059
    • /
    • 2022
  • This study investigated microbial communities and their diversity in a full-scale mesophilic anaerobic digester treating sewage sludge. Influent sewage sludge and anaerobic digester samples collected from a wastewater treatment plant in Busan were analyzed using high-throughput sequencing. It was found that the microbial community structure and diversity in the anaerobic digester could be affected by inoculation effect with influent sewage sludge. Nevertheless, distinct microbial communities were identified as the dominant microbial communities in the anaerobic digester. Twelve genera were identified as abundant bacterial communities, which included several groups of syntrophic bacteria communities, such as Candidatus Cloacimonas, Cloacimonadaceae W5, Smithella, which are (potential) syntrophic-propionate-oxidizing bacteria and Mesotoga and Thermovigra, which are (potential) syntrophic-acetate-oxidizing bacteria. Lentimicrobium, the most abundant genus in the anaerobic digester, may contribute to the decomposition of carbohydrates and the production of volatile fatty acids during the anaerobic digestion of sewage sludge. Of the methanogens identified, Methanollinea, Candidatus Methanofastidiosum, Methanospirillum, and Methanoculleus were the dominant hydrogenotrophic methanogens, and Methanosaeta was the dominant aceticlastic methanogens. The findings may be used as a reference for developing microbial indicators to evaluate the process stability and process efficiency of the anaerobic digestion of sewage sludge.

Change of Wetland Microbial Activities after Creation of Constructed Wetlands (인공습지 조성 후 습지미생물활성도 변화에 관한 연구)

  • Lee, Ja-Yeon;Kim, Bo-Ra;Park, So-Young;Sung, Ki-June
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.17-26
    • /
    • 2010
  • To understand the initial changes in the microbial activities of wetland soil after construction, dehydrogenase activity (DHA) and denitrification potential (DNP) of soil from 1 natural wetland and 2 newly constructed wetlands were monitored. Soil samples were collected from the Daepyung marsh as a natural wetland, a treatment wetland in the West Nakdong River, and an experimental wetland in the Pukyong National University, Busan. The results showed that the DHA of the natural wetland soil was 6.1 times higher than that of the experimental wetland and similar to that of the treatment wetland 6 months after wetland construction (fall). Few differences were observed in the DNP between the soil samples from the natural wetland and 2 constructed wetlands four months after wetland construction (summer). However, 6 months after the construction (fall), the DNP of the soil samples from the natural wetland was 12.9 times and 1.8 times higher than that of the experimental wetland and the treatment wetland, respectively. These results suggested that the presence of organic matter as a carbon source in the wetland soil affects the DHA of wetland soil. Seasonal variation of wetland environment, acclimation time under anaerobic or anoxic wetland conditions, and the presence of carbon source also affect the DNP of the wetland soil. The results imply that the newly constructed wetland requires some period of time for having the better contaminant removal performance through biogeochemical processes. Therefore, those microbial activities and related indicators could be considered for wetland management such as operation and performance monitoring of wetlands.

Responses of Low-Quality Soil Microbial Community Structure and Activities to Application of a Mixed Material of Humic Acid, Biochar, and Super Absorbent Polymer

  • Li, Fangze;Men, Shuhui;Zhang, Shiwei;Huang, Juan;Puyang, Xuehua;Wu, Zhenqing;Huang, Zhanbin
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1310-1320
    • /
    • 2020
  • Low-quality soil for land reuse is a crucial problem in vegetation quality and especially to waste disposal sites in mining areas. It is necessary to find suitable materials to improve the soil quality and especially to increase soil microbial diversity and activity. In this study, pot experiments were conducted to investigate the effect of a mixed material of humic acid, super absorbent polymer and biochar on low-quality soil indexes and the microbial community response. The indexes included soil physicochemical properties and the corresponding plant growth. The results showed that the mixed material could improve chemical properties and physical structure of soil by increasing the bulk density, porosity, macro aggregate, and promote the mineralization of nutrient elements in soil. The best performance was achieved by adding 3 g·kg-1 super absorbent polymer, 3 g·kg-1 humic acid, and 10 g·kg-1 biochar to soil with plant total nitrogen, dry weight and height increased by 85.18%, 266.41% and 74.06%, respectively. Physicochemical properties caused changes in soil microbial diversity. Acidobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, Nitrospirae, Planctomycetes, and Proteobacteria were significantly positively correlated with most of the physical, chemical and plant indicators. Actinobacteria and Armatimonadetes were significantly negatively correlated with most measurement factors. Therefore, this study can contribute to improving the understanding of low-quality soil and how it affects soil microbial functions and sustainability.

Indicator Microorganisms Used as Fecal Contamination in Aquatic Environments (수계환경에서 분변성 오염의 지표로 사용되는 미생물들)

  • 이건형
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.3
    • /
    • pp.189-196
    • /
    • 2002
  • The direct detection of intestinal pathogens and viruses often requires costly, tedious, and time-consuming procedures. These requirements developed a test to show that the water was contaminated with sewage-borne pathogens by assessing the hygienic quality of water based on indicator microorganisms whose presence indicates that pathogenic microorganisms may also be present. Various groups of microorganisms have been suggested and used as indicator microorganisms. Proposed and commonly used microbial indicators are total coliforms, fecal coliforms, fecal streptococci, Clostridium perfringens, heterotrophic plate count, bacteriophage, and so on. Unfortunately, most, if not all, of these indicators are not ideal because of the sensitivity and resistance to environment stresses and disinfection. However, the development of gene probes and PCR technology may give hope for the discovery of rapid and simple methods toy detecting small number of fecal pathogens in various environments.

Microbiological Quality and Antibiotic Susceptibility of E. coli Isolated from Agricultural Water in Gyeonggi and Gangwon Provinces (경기, 강원 지역 농업용수의 미생물학적 특성 및 농업용수 분리 대장균의 항생제 내성)

  • Hwang, Injun;Park, Daesoo;Chae, Hyobeen;Kim, Eunsun;Yoon, Jae-Hyun;Rajalingam, Nagendran;Choi, Songyi;Kim, Se-Ri
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.4
    • /
    • pp.343-351
    • /
    • 2020
  • BACKGROUND: Irrigation water is known to be one of the major sources of bacterial contamination in agricultural products. In addition, anti-microbial resistance (AMR) bacteria in food products possess serious threat to humans. This study was aimed at investigating the prevalence of foodborne bacteria in irrigation water and evaluating their anti-microbial susceptibility. METHODS AND RESULTS: Surface water (n = 66 sites) and groundwater (n = 40 sites) samples were collected from the Gyeongi and Gangwon provinces of South Korea during April, July, and October 2019. To evaluate the safety of water, fecal indicators (Escherichia coli) and foodborne pathogens (E. coli O157:H7, Salmonella spp., and Listeria monocytogenes) were examined. E. coli isolates from water were further tested for antimicrobial susceptibility using VITEK2 system. Overall, detection rate of foodborne pathogens in July was highest among three months. The prevalence of pathogenic E. coli (24%), Salmonella (3%), and L. monocytogenes (3%) was higher in surface water, while only one ground water site was contained with pathogenic E. coli (2.5%). Of the 343 E. coli isolates, 22.7% isolates were resistant to one or more antimicrobials (ampicillin (18.7%), trimethoprim-sulfamethoxazole (7.0%), and ciprofloxacin (6.7%)). CONCLUSION: To enhance the safety of agricultural products, it is necessary to frequently monitor the microbial quality of water.

Quality Characteristics and Microbial Safety of Sunsik with Dandelion (Taraxacum platycarpum) Complex Extract Powder (AF-343) for Home Meal Replacement (간편가정식용 민들레복합추출물 (AF-343) 첨가 선식의 품질특성 및 미생물적 안전성)

  • Ra, Ha-Na;Kim, Hae-Young
    • Korean journal of food and cookery science
    • /
    • v.30 no.5
    • /
    • pp.642-649
    • /
    • 2014
  • We investigated the antioxidant and physicochemical qualities as well as the sensory characteristics, and microbial safety of sunsik containing varied amounts of AF-343, which can help add moisture to the skin and relieve the symptoms of atopic dermatitis. Samples did not show significant differences in pH measurements, but the pH had a tendency to increase with tendencies as increased amounts of AF-343. The total phenolic compound contents and DPPH radical scavenging activity, indicators of biologically active ingredients such as antioxidant, anticancer and antibacterial activity, significantly increased as the amounts of AF-343 increased (p<0.05). In an acceptance test, the samples did not show significant differences, however samples with the 750 mg AF-343 received the highest scores out of all the samples in overall acceptance. All samples were confirmed as microbially safe according to the food code applied to food manufacturers. Aerobic plate counts of the control group were 1.60 log CFU/g, while those of samples with 750 mg AF-343 were 1.70 log CFU/g. E. coli. Pathogenic microorganisms tests were either negative or not detected in all samples.

Investigation of Microbial Contamination Level during Production of Baby Leafy Vegetables (어린잎채소 생산 농장의 위생지표세균과 병원성미생물 오염도 조사)

  • Lee, Eun-Sun;Kwak, Min-Gyu;Kim, Won-Il;An, Hyun Mi;Lee, Hyo-Sup;Ryu, Song-Hee;Kim, Hwang-Yong;Ryu, Jae-Gee;Kim, Se-Ri
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.4
    • /
    • pp.264-271
    • /
    • 2016
  • The purpose of this study was to investigate contamination sources of baby leafy vegetables by assessing microbial loads on baby leafy vegetables and agricultural inputs contacted with the vegetables. To estimate microbial loads, fecal indicators (coliform and Escherichia coli) and foodborne pathogens (E. coli O157:H7, Salmonella spp., Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus) were examined. A total of 126 samples including eleven kinds of leafy vegetables, irrigation water, media, and tools were tested, resulting in coliform contamination observed from most of samples. For E. coli, 10.3% (13/126) of the samples were positive including irrigation water, knife, handler, media, tools, and three kinds of leafy vegetables. B. cereus was detected from 38% (48/126) of the samples including media, tools and three kinds of leafy vegetables. No E. coli O157:H7, Salmonella spp., and L. monocytogenes was detected. This result implies that contacting with agricultural inputs could explain microbial load of baby leafy vegetables.

Investigation of Microbial Safety and Correlations Between the Level of Sanitary Indicator Bacteria and the Detection Ratio of Pathogens in Agricultural Water (농업용수의 미생물학적 안전성 조사 및 위생지표세균 농도와 병원성미생물 검출률과의 상관관계 분석)

  • Hwang, Injun;Lee, Tae Kwon;Park, Daesoo;Kim, Eunsun;Choi, Song-Yi;Hyun, Jeong-Eun;Rajalingam, Nagendran;Kim, Se-Ri;Cho, Min
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.248-259
    • /
    • 2021
  • BACKGROUND: Contaminated water was a major source of food-borne pathogens in various recent fresh produce-related outbreaks. This study was conducted to investigate the microbial contamination level and correlations between the level of sanitary indicator bacteria and the detection ratio of pathogens in agricultural water by logistic regression analysis. METHODS AND RESULTS: Agricultural water was collected from 457 sites including surface water (n=300 sites) and groundwater (n=157 sites) in South Korea from 2018 to 2020. Sanitary indicator bacteria (total coliform, fecal coliform, and Escherichia coli) and food-borne pathogens (pathogenic E. coli, E. coli O157:H7, Salmonella spp., and Listeria monocytogenes) were analyzed. In surface water, the coliform, fecal coliform, and E. coli were 3.27±0.89 log CFU/100 mL, 1.90±1.19 log CFU/100 mL, and 1.39±1.26 log CFU/100 mL, respectively. For groundwater, three kinds of sanitary indicators ranged in the level from 0.09 - 0.57 log CFU/100 mL. Pathogenic E. coli, Salmonella and Listeria monocytogenes were detected from 3%-site, 1.5%- site, and 0.6%-site water samples, respectively. According to the results of correlations between the level of sanitary indicator bacteria and the detection ratio of pathogens by logistic regression analysis, the probability of pathogen detection increased individually by 1.45 and 1.34 times as each total coliform and E. coli concentration increased by 1 log CFU/100mL. The accuracy of the model was 70.4%, and sensitivity and specificity were 81.5% and 51.7%, respectively. CONCLUSION(S): The results indicate the need to manage the microbial risk of agricultural water to enhance the safety of fresh produce. In addition, logistic regression analysis is useful to analyze the correlation between the level of sanitary indicator bacteria and the detection ratio of pathogens in agricultural water.