• Title/Summary/Keyword: microbial fermentation

Search Result 1,003, Processing Time 0.025 seconds

Microbial production of coenzyme Q10

  • Suh, Jung-Woo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2006.11a
    • /
    • pp.127-130
    • /
    • 2006
  • Coenzyme Q10(CoQ10) is a biological quinine compound that is widely found in living organisms including yeast, plants, and animals. CoQ10 has two major physiological activities:(a)mitochondrial electron-transport activity and (b )antioxidant activity. Various clinical applications are also available: Parkinson's disease, Heart disease, diabetes. Because of its various application filed, the market size of CoQ10 is continuously expanding all over the world. A Japanese company, Nisshin Pharma Inc. is the first industrial producer of CoQ10(1974). CoQ10 can be produced by fermentation and chemical synthesis. In several companies, these two methods are used for the production of CoQ10:chemical synthesis - Yungjin, Daewoong, Nishin Parma; fermentation - Kaneka, Kyowa, Yungjin, etc. Researchs in microbial production of CoQ10 have several steps: screening of producing microorganisms, strain development, fermentation process, purification process, scale-up process, plant production. Several strategies are available for the strain development : Random mutation and screening, directed metabolic engineering. For the optimization of fermentation process, various conditions (nutrient, aeration, temperature, culture type, etc.) are considered. Purification is one of the most important step because the quality of final products entirely depends on its purity. The production cost will be reduced and the quality of the CoQ10 will be impoved by continuous researches in strain development, fermentation process, purification process.

  • PDF

Change of Microbial Communities in Kimchi Fermentation at Low Temperature (김치의 저온 발효 중 미생물 변화 양상)

  • 박정아;허건영;이정숙;오윤정;김보연;민태익;김치경;안종석
    • Korean Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.45-50
    • /
    • 2003
  • The diversity and change of microbial communities during kimchi fermentation at $4^{\circ}C$ were analyzed by denaturing gradient gel electrophoresis (DGGE). Kimchi samples were taken every 5 days over the fermentation periods (for 60 days) to extract total DNA for DGGE analysis. Touchdown polymerase chain reaction was performed to amplify the V3 region of 16S rRNA gene. Sequencing results of partial 16S rDNA amplicons from DGGE profiles revealed that lactic acid bacteria (LAB), especially Weissella koreensis, Lactobacillus sakei and Leuconostoc gelidum were dominants in kimchi fermentation at $4^{\circ}C$. And we knew that W. koreensis steadily existed throughout the whole fermentation period, also Lb. sakei and Leuc. gelidum appeared from 10th day and 30th day of fermentation time, respectively and then these species were to be dominant microorganisms.

Microbial production of coenzyme Q10

  • Suh, Jung-Woo
    • 한국약용작물학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.127-130
    • /
    • 2006
  • Coenzyme Q10(CoQ10) is a biological quinine compound that is widely found in living organisms including yeast, plants, and animals. CoQ10 has two major physiological activities:(a)mitochondrial electron-transport activity and (b)antioxidant activity. Various clinical applications are also available : Parkinson's disease, Heart disease, diabetes. Because of its various application filed, the market size of CoQ 10 is continuously expanding all over the world. A Japanese company, Nisshin Pharma Inc. is the first industrial producer of CoQ10(1974). CoQ10 can be produced by fermentation and chemical synthesis. In several companies, these two methods are used for the production of CoQ10:chemical synthesis - Yungjin, Daewoong, Nishin Parma; fermentation - Kaneka, Kyowa, Yungjin, etc. Researchs in microbial production of CoQ10 have several steps: screening of producing microorganisms, strain development, fermentation process, purification process, scale-up process, plant production. Several strategies are available for the strain development : Random mutation and screening, directed metabolic engineering. For the optimization of fermentation process, various conditions (nutrient, aeration, temperature, culture type, etc.) are considered. Purification is one of the most important step because the quality of final products entirely depends on its purity. The production cost will be reduced and the quality of the CoQ10 will be impoved by continuous researches in strain development, fermentation process, purification process.

  • PDF

Microbial Changes in Salted and Fermented Shrimp at Different Salt Levels during Fermentation (염농도를 달리한 새우젓 발효 중 미생물 변화)

  • Mok, Chul-Kyoon;Lee, Ju-Yeon;Park, Jong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.444-447
    • /
    • 2000
  • The microbial changes during the fermentation of salted and fermented shrimp at different salt levels $(3{\sim}30%)$ were investigated to elucidate the effect of salt on the microflora of the fermented shrimp. During 22 weeks of fermentation, the numbers of total bacteria and yeasts of the fermented shrimp with 3, 8, 30% salt generally decreased with fermentation time, while those in the fermented shrimp of 18% salt increased. Halophilic bacteria were found only in the late stage of the fermentation at 18% salt. The greatest number of the halophilic yeasts was observed also at 18% salt level. The results indicated that 18% salt provided the most favorable environment for the microorganisms related to the shrimp fermentation.

  • PDF

Review: Magnetite Synthesis using NanoFermentation (Review: NanoFermentation을 이용한 자철석 합성연구)

  • Moon, Ji-Won;Roh, Yul;Phelps, Tommy J.
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.195-204
    • /
    • 2012
  • Biomineralization has been explored for geochemical cycles and microbial tolerance mechanisms to metal toxicity. Here, we are introducing NanoFermentation which enables economic, environmentally friendly, requiring low input energy, and scalable manufacturing of nano-dimensioned magnetite. We are also focusing on controlling factors of crystallite size which can determine superparamagnetism and ferrimagnetism. Controlling factors are such as microbial species, temperature, incubation time, medium composition, substituted elements and their concentration, precursor type, reaction volume, precursor concentration density and their combinations. Crystallite size distribution of biomagnetite depends on the balance between nuclei generation and crystal growth. Biomineralization will elucidate elemental cycles on earth crust and microbial ecology as well as it will be applied to material sciences and devices via massive production of nanomaterials.

Analysis and Enrichment of Microbial Community Showing Reducing Ability toward indigo in the Natural Fermentation of Indigo-Plant (자연발효 과정에서 인디고에 환원력을 지닌 미생물 커뮤니티 분석과 농화배양)

  • Choi, Eun-Sil;Lee, Eun-Bin;Choi, Hyueong-An;Son, Kyunghee;Kim, Geun-Joong;Shin, Younsook
    • KSBB Journal
    • /
    • v.28 no.5
    • /
    • pp.295-302
    • /
    • 2013
  • Indigo is utilized in various industries including textile dyeing, cosmetics, printing and medicinal products and its reduced form, leuco-indigo, is mainly used in these process. Chemical reducing agent (sodium dithionite, sodium sulfide, etc.) is preferred to use for the formation of leucoindigo in industry. In traditional indigo fermentation process, microorganisms can participate in the reduction of indigo and thus it has been known to reduce environmental pollution and noxious byproducts. However, in fermentation method using microorganisms it is difficult to standardize large scale production process due to low yield and reproducibility. In this study, we attempted to develop the indigo reduction process using microbial flora which was isolated from naturally fermented indigo vat or deduced by metagenomic approach. From the results of library analyses of PCR-amplified 16S rRNA genes from the traditional indigo fermentation vat sample (metagenome), it was confirmed that Alkalibacteriums (71%) was distinctly dominant in population. Some strains were identified after confirming that they become pure culture in nutrient media modified slightly. Four strains were separated in this process and each strain showed obvious reducing ability toward indigo in dyeing test. It is expected that the analyzed results will provide important data for standardizing the natural fermentation of indigo and investigating the mechanism of indigo reduction.

Fermentation characteristics, chemical composition and microbial community of tropical forage silage under different temperatures

  • Li, Dongxia;Ni, Kuikui;Zhang, Yingchao;Lin, Yanli;Yang, Fuyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.5
    • /
    • pp.665-674
    • /
    • 2019
  • Objective: In tropical regions, as in temperate regions where seasonality of forage production occurs, well-preserved forage is necessary for animal production during periods of forage shortage. However, the unique climate conditions (hot and humid) and forage characteristics (high moisture content and low soluble carbohydrate) in the tropics make forage preservation more difficult. The current study used natural ensiling of tropical forage as a model to evaluate silage characteristics under different temperatures ($28^{\circ}C$ and $40^{\circ}C$). Methods: Four tropical forages (king grass, paspalum, white popinac, and stylo) were ensiled under different temperatures ($28^{\circ}C$ and $40^{\circ}C$). After ensiling for 30 and 60 days, samples were collected to examine the fermentation quality, chemical composition and microbial community. Results: High concentrations of acetic acid (ranging from 7.8 to 38.5 g/kg dry matter [DM]) were detected in silages of king grass, paspalum and stylo with relatively low DM (ranging from 23.9% to 30.8% fresh material [FM]) content, acetic acid production was promoted with increased temperature and prolonged ensiling. Small concentrations of organic acid (ranging from 0.3 to 3.1 g/kg DM) were detected in silage of white popinac with high DM content (50.8% FM). The microbial diversity analysis indicated that Cyanobacteria originally dominated the bacterial community for these four tropical forages and was replaced by Lactobacillus and Enterobacter after ensiling. Conclusion: The results suggested that forage silages under tropical climate conditions showed enhanced acetate fermentation, while high DM materials showed limited fermentation. Lactobacillus and Enterobacter were the most probable genera responsible for tropical silage fermentation.

Changes in microbial population and chemical composition of corn stover during field exposure and effects on silage fermentation and in vitro digestibility

  • Sun, Lin;Wang, Zhijun;Gentu, Ge;Jia, Yushan;Hou, Meiling;Cai, Yimin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.6
    • /
    • pp.815-825
    • /
    • 2019
  • Objective: To effectively use corn stover resources as animal feed, the changes in microbial population and chemical composition of corn stover during field exposure, and their silage fermentation and in vitro digestibility were studied. Methods: Corn cultivars (Jintian, Jinnuo, and Xianyu) stovers from 4 random sections of the field were harvested at the preliminary dough stage of maturity on September 2, 2015. The corn stover exposed in the field for 0, 7, 15, 30, 60, 90, and 180 d, and their silages at 60 d of ensiling were used for the analysis of microbial population, chemical composition, fermentation quality, and in vitro digestibility. Data were analyzed with a completely randomized $3{\times}6$ [corn stover cultivar $(C){\times}exposure$ d (D)] factorial treatment design. Analysis of variance was performed using SAS ver. 9.0 software (SAS Institute Inc., Cary, NC, USA). Results: Aerobic bacteria were dominant population in fresh corn stover. After ensiling, the lactic acid bacteria (LAB) became the dominant bacteria, while other microbes decreased or dropped below the detection level. The crude protein (CP) and water-soluble carbohydrate (WSC) for fresh stover were 6.74% to 9.51% and 11.75% to 13.21% on a dry matter basis, respectively. After exposure, the CP and WSC contents decreased greatly. Fresh stover had a relatively low dry matter while high WSC content and LAB counts, producing silage of good quality, but the dry stover did not. Silage fermentation inhibited nutrient loss and improved the fermentation quality and in vitro digestibility. Conclusion: The results confirm that fresh corn stover has good ensiling characteristics and that it can produce silage of good quality.

Influence of Capsaicinoids Content on the Microbial Community during Kimchi Fermentation

  • Park, Boyeon;Yang, Ji-Su;Moon, Eun Woo;Seo, Hye-Young;Ha, Ji-Hyoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1580-1590
    • /
    • 2019
  • Capsaicinoids in red pepper powder are known to show anti-bacterial effects; however, their effects during kimchi fermentation are not known. This study aimed to investigate the effects of various concentrations of capsaicinoids on kimchi fermentation. Five sets of kimchi samples were prepared using 0 mg/kg (control), $98.34{\pm}5.34mg/kg$ (mild), $243.47{\pm}3.71mg/kg$ (medium), $428.63{\pm}30.78mg/kg$ (hot), and $1,320.49{\pm}28.27mg/kg$ (extreme) capsaicinoid. The characteristics of each kimchi sample, including pH, acidity, organic acid, sugars, sugar alcohol, capsaicinoid content, and microbial community were periodically investigated during fermentation. Kimchi with red pepper powder shows significantly higher acidity than control kimchi, whereas pH values were the same. Organic acid in kimchi with red pepper powder was higher than in control kimchi, probably caused by higher lactic acid bacteria (LAB) counts in kimchi samples with red pepper powder. Our results show that addition of red pepper powder decreased Leuconostoc spp. counts in the bacterial community. In particular, Lactobacillus sakei and Leuconostoc gelidum counts increased and decreased, respectively, with increasing capsaicinoid content of red pepper powder added to kimchi. Overall, the results of this study indicate that physicochemical properties and LAB such as L. sakei and L. gelidum are influenced by capsaicinoid content. However, further studies are necessary to investigate the effects of the percentage of red pepper powder in kimchi on fermentation to provide practical guidelines for producing standardized kimchi.

Changes in microbial community and physicochemical characterization of Makgeolli during fermentation by yeast as a fermentation starter (효모 첨가 유무에 따른 막걸리의 발효 중 미생물 군집 및 이화학적 특성 변화)

  • Choi, Ji-Hae;Lim, Bo-Ra;Kang, Ji-Eun;Kim, Chan-Woo;Kim, Young-Soo;Jeong, Seok-Tae
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.529-537
    • /
    • 2020
  • This study was carried out to confirm changes in the microbial community and physicochemical characteristics of Korean traditional Makgeolli during fermentation by yeast as a fermentation starter. We demonstrate that the microbial community during fermentation affects the quality of Makgeolli. At the species level, Pediococcus pentosaceus, Weissella confusa, Pantoea vagans, and Lactobacillus graminis were dominant on fermentation mix, after 1-2 days, in the control group without yeast treatment. Acid production in the control group was higher than that in the yeast-treated group. P. pentosaceus was dominant throughout the fermentation process, and the proportion of P. vagans remarkably decreased following yeast addition. Considering quality characteristics, the alcohol content rapidly increased after yeast addition, and the lactic acid content was lower in the yeast-treated group than in the control. These results suggest that the rapid increase in alcohol at the start of fermentation inhibits the growth of lactic acid-producing bacteria. The addition of yeast may contribute to the reduction in the high amount of lactic acid, which can be one of the causes of changes in Makgeolli quality.