• Title/Summary/Keyword: microbial enzyme

Search Result 573, Processing Time 0.034 seconds

Screening of $\alpha$-amylase and $\alpha$-glucosidase Inhibitors from Brazilian Plant Extracts for Treatment of Rumen Acidosis (100종 브라질 식물 추출물로부터 반추동물 산독증 예방치료를 위한 $\alpha$-amylase 및 $\alpha$-glucosidase 저해제의 선별)

  • Kim, Mi-Sun;An, Seon-Mi;Jung, In-Chang;Kwon, Gi-Seok;Sohn, Ho-Yong
    • Food Science and Preservation
    • /
    • v.17 no.2
    • /
    • pp.290-296
    • /
    • 2010
  • To develop anti-acidosis and anti-diabetes agentsfrom natural products, the inhibitory activities of Brazilian plant extracts against microbial $\alpha$-amylase and $\alpha$-glucosidase were evaluated. Among 100 different ethanol extracts tested, those of Acacia jurema Mart., Anacardium humile A. St.-Hil., Cedrela odorata L., and Guazuma ulmifolia Lam showed good inhibitoryactivities toward both enzymes. In addition, an extract of Plumeria drastica Mart. showed specific inhibition of $\alpha$-amylase, whereas that of Eugenia uniflora L. demonstrated strong inhibition of the enzyme. IC50 values of $\alpha$-amylase inhibition suggested that the extract of A. humile A. St.-Hil., which has been used as an anti-diabetes medicine in Brazil, had potent inhibitory activity. The IC50 for the A. humile A. St.-Hil. extract ($91.2{\mu}g/mL$) was similar to that of acarbose ($50.5{\mu}g/mL$). This activity of A. humile A. St.-Hil. was not reduced by heat or acid treatment. Moreover, treatment with HCl (0.01 M) for 1 h increased the inhibitory activity from 57.5% to 81.2%. Also, the extract did not cause hemolysis of human red blood cells at levels up to 1 mg/mL. The results indicate that the extract of A. humile A. St.-Hil. is potentially useful as an anti-acidosis and anti-diabetes agent.

Anaerobic Bacterial Degradation for the Effective Utilization of Biomass

  • Ohmiya, Kunio;Sakka, Kazuo;Kimura, Tetsuya
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.482-493
    • /
    • 2005
  • Biomass is originally photosynthesized from inorgainic compounds such as $CO_2$, minerals, water and solar energy. Recent studies have shown that anaerobic bacteria have the ability to convert recalcitrant biomass such as cellullosic or chitinoic materials to useful compounds. The biomass containing agricultural waste, unutilized wood and other garbage is expected to utilize as feed, food and fuel by microbial degradation and other metabolic functions. In this study we isolated several anaerobic, cellulolytic and chitinolytic bacteria from rumen fluid, compost and soil to study their related enzymes and genes. The anaerobic and cellulolytic bacteria, Clostridium thermocellum, Clostridium stercorarium, and Clostridium josui, were isolated from compost and the chitinolytic Clostridium paraputrificum from beach soil and Ruminococcus albus was isolated from cow rumen. After isolation, novel cellulase and xylanase genes from these anaerobes were cloned and expressed in Escherichia coli. The properties of the cloned enzymes showed that some of them were the components of the enzyme (cellulase) complex, i.e., cellulosome, which is known to form complexes by binding cohesin domains on the cellulase integrating protein (Cip: or core protein) and dockerin domains on the enzymes. Several dockerin and cohesin polypeptides were independently produced by E. coli and their binding properties were specified with BIAcore by measuring surface plasmon resonance. Three pairs of cohesin-dockerin with differing binding specificities were selected. Two of their genes encoding their respective cohesin polypeptides were combined to one gene and expressed in E. coli as a chimeric core protein, on which two dockerin-dehydrogenase chimeras, the dockerin-formaldehyde dehydrogenase and the dockerin-NADH dehydrogenase are planning to bind for catalyzing $CO_2$ reduction to formic acid by feeding NADH. This reaction may represent a novel strategy for the reduction of the green house gases. Enzymes from the anaerobes were also expressed in tobacco and rice plants. The activity of a xylanase from C. stercorarium was detected in leaves, stems, and rice grain under the control of CaMV35S promoter. The digestibility of transgenic rice leaves in goat rumen was slightly accelerated. C. paraputrificum was found to solubilize shrimp shells and chitin to generate hydrogen gas. Hydrogen productivity (1.7 mol $H_2/mol$ glucos) of the organism was improved up to 1.8 times by additional expression of the own hydrogenase gene in C. paraputrficum using a modified vector of Clostridiu, perfringens. The hydrygen producing microflora from soil, garbage and dried pelletted garbage, known as refuse derived fuel(RDF), were also found to be effective in converting biomass waste to hydrogen gas.

Pathogene Resistance of cotton GST cDNA in Transgenic Scrophularia buergeriana Misrule (목화 Glutathione S-Transferase (GST) 유전자로 형질 전환된 현삼의 내병성 특성)

  • 강원희;임정대;이성호;유창연
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.6
    • /
    • pp.297-304
    • /
    • 2001
  • Scrophularia buergeriana Misrule has been contaminated with various pathogens in condition of field and storage period. This study was carried out for production of multiple stress resistance plant containing disease resistance that CGST gene expressed in transgenic Scrophularia buergeriana Misrule genome. Glutathione S-Transferases (GSTs) detoxify endobiotic and xenobiotic compounds by covalent linking of tripeptide glutathione to hydrophobic substrate. GST enzymes have been identified and characterized in insects, bacteria, and many plant species. A cDNA clone of GST was introduced into Scrophularia buergeriana Miquel by transformation with Agrobacterium tumefaciences. In coporation of the CGST gene into S. buergeriana Misrule was confirmed by PCR analysis of genomic DNA. Influence of exposure to darkness on the regeneration potential and transformation frequence were assessed. The activity of GST in transgenic plants was two times higher than that of non-transgenic plants. As a result of anti-microbe assays, the crude extract protein of transgenic plants showed the antimicrobial effects higher than control plants.

  • PDF

Enhanced Acetylcholinesterase Activity of the Indianmeal Moth, Plodia interpunctella, Under Chlorine Dioxide Treatment and Altered Negative Phototaxis Behavior (이산화염소 처리에 따른 화랑곡나방 아세틸콜린에스터레이즈 활성 증가와 음성주광성 행동 변화)

  • Kim, Minhyun;Kwon, Hyeok;Kwon, yunsik;Kim, Wook;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.55 no.1
    • /
    • pp.27-33
    • /
    • 2016
  • Chlorine dioxide has been used as a disinfectant against microbial pathogens. Recently, its insecticidal activity has been known against stored insect pests by oxidative stress. However, any molecular target of the oxidative stress induced by chlorine dioxide has been not known in insects. This study assessed an enzyme activity of acetylcholinesterase (AChE) as a molecular target of chlorine dioxide in the Indianmeal moth, Plodia interpunctella. AChE activities were varied among developmental stages of P. interpunctella. Injection of chlorine dioxide with lethality-causing doses significantly increased AChE activity of the fifth instar larvae of P. interpunctella. Exposure of the larvae to chlorine dioxide fumigant also significantly increased AChE activity. The fifth instar larvae of P. interpunctella exhibited a negative phototaxis. However, chlorine dioxide treatment significantly interrupted the innate behavior. These results suggest that AChE is one of molecular targets of oxidative stress due to chlorine dioxide in P. interpunctella.

Evaluation of the Dressed Soil applied in Mountainous Agricultural Land (산지농경지에 투입되는 모재성토의 특성과 농업환경에 미치는영향)

  • Joo, Jin-Ho;Park, Chol-Soo;Jung, Yeong-Sang;Yang, Jae-E;Choi, Joong-Dae;Lee, Won-Jung;Kim, Sung-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.245-250
    • /
    • 2004
  • Farmers typically apply the dressed soil (coarse saprolite) for various reasons in the sloped upland with high altitude in Kangwon province. However, little researches on the impacts of application of dressed soil in uplands were conducted. Therefore, it is necessary to assess soil quality in this area and to study adverse effects on soil and water due to application of dressed soil. Coarse saprolite itself showed signiScantly poor chemical properties, Particularly P and organic matter contents were not enough for crops to grow. With respect to biological qualities such as enzyme activity and microbial population, coarse saprolite itself showed poor qualities. For example, bacterial population in coarse saprolite contains six times or ten times smaller populations. Based on survey at Jawoon-ri in Hongchon-gun, this region is susceptible for soil erosion due to massive amounts of coarse saprolite application, undesirably long slope length, etc. When weestimated soil loss, more than 40% of farming field in this region exceeded $11.2MT\;ha^{-1}\;yr^{-1}$. According to experiment by installing sediment basins. the sediment basin with up-down tillage and application with dressed soil had the highest soil loss and runofT, while the sediment basin with contour tillage and without soil dressing showed the lowest soil erosion and runoff.

Molecular cloning and characterization of 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (CaHDR) from Camptotheca acuminata and its functional identification in Escherichia coli

  • Wang, Qian;Pi, Yan;Hou, Rong;Jiang, Keji;Huang, Zhuoshi;Hsieh, Ming-shiun;Sun, Xiaofen;Tang, Kexuan
    • BMB Reports
    • /
    • v.41 no.2
    • /
    • pp.112-118
    • /
    • 2008
  • Camptothecin is an anti-cancer monoterpene indole alkaloid. The gene encoding 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (designated as CaHDR), the last catalytic enzyme of the MEP pathway for terpenoid biosynthesis, was isolated from camptothecin-producing Camptotheca acuminata. The full-length cDNA of CaHDR was 1686 bp encoding 459 amino acids. Comparison of the cDNA and genomic DNA of CaHDR revealed that there was no intron in genomic CaHDR. Southern blot analysis indicated that CaHDR belonged to a low-copy gene family. RT-PCR analysis revealed that CaHDR expressed constitutively in all tested plant organs with the highest expression level in flowers, and the expression of CaHDR could be induced by 100 ${\mu}M$ methyl-jasmonate (MeJA), but not by 100 mg/L salicylic acid (SA) in the callus of C. acuminata. The complementation of CaHDR in Escherichia coli ispH mutant MG1655 demonstrated its function.

Effects of Sea Tangle and Chitosan on the Physicochemical Properties of Traditional Kochujang (다시마와 키토산을 첨가한 전통고추장의 품질특성에 관한 연구)

  • 권영미;김동한
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.6
    • /
    • pp.977-985
    • /
    • 2002
  • In order to improve the quality of traditional kochujang, submaterials like sea tangle and chitosan were added to kochujang and their effects on microbial characteristics, enzyme activities and physicochemical characteristics were investigated for 24 weeks of fermentation. The activities of $\alpha$,$\beta$-amylase in kochujmg were higher in sea tangle added at 2% level and chitosan added at 0.1% level. However, acidic protease activity decreased as the ratio of submaterials increased. Viable cells of yeasts in the kochujang increased rapidly for 4~8 weeks of fermentation, and bacterial counts decreased in submaterials added groups. Moisture contents of kochujang increased until 12 weeks of fermentation, but water activity decreased. As the ratio of sea tangle increased, water activity decreased. Consistency of kochujang increased after middle of fermentation, and they increased remarkably by addition of sea tangle. The degree of increase in total color difference ($\Delta$E) of sea tangle added group was lowest. The titratable acidity of kochujang decreased after 4 weeks, and they changed a little by addition of chitosan. Amino nitrogen contents of kochujang increased as mixing ratio of submaterials increased in the late period of aging. Ammonia nitrogen contents was lower in chitosan added kochujang at 24 week of fermentation. Reducing sugar contents of kochujang increased rapidly for 4~8 weeks of fermentation, and they increased as the ratio of chitosan increased. Ethanol contents of kochujang increased until 12~16 weeks of fermentation, with lower values in sea tangle added group. After 24 weeks of fermentation, the result of sensory evaluation showed that 0.1% chitosan added kochujang were more acceptable than sea tangle added kochujang in the taste, color and overall acceptability.all acceptability.

Characterization of Extracellular Cholesterol Oxidase Produced from Soil Microorganism (토양 미생물로부터 생산된 Extracellular Cholesterol Oxidase의 특성)

  • Park, Jeong-Su;Jeong, Jong-Moon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.11
    • /
    • pp.1507-1514
    • /
    • 2008
  • Cholesterol oxidase catalyses the conversion of cholesterol to 4-cholesten-3-one. This enzyme has been used for clinical assay of human serum cholesterol and for reduction of cholesterol level in foods and feeds. In order to search the microorganism which has a high extracellular and stable activity of cholesterol oxidase, soil microorganisms were screened. As a result, the one with the highest extracellular cholesterol oxidase activity was obtained and named as the BEN 115. The BEN 115 strain was identified as one of the Nocardia species based on our taxonomic studies. The cholesterol oxidase from this strain was shown to have two bands of extracellular proteins on SDS-PAGE and Western blot. Their molecular masses were estimated to be about 55 and 57 kDa, respectively. In addition, this cholesterol oxidase was considerably stable at the broad range of pH $3.5{\sim}9.5$ and at the temperature of $25{\sim}55^{\circ}C$. The optimum pH and temperature of this cholesterol oxidase were pH 5.5 and $35^{\circ}C$, respectively. The activity of extracellular cholesterol oxidase could be enhanced 1.6 to 2.0 folds by the addition of nonionic detergent such as Triton X-114, Triton X-100, or Tween-80 into the culturing broth. The substrate specificities against campesterol, sitosterol and stigmasterol were measured to be 50%, 50%, and 27%, respectively, compared to the cholesterol. These results suggest that Nocardia sp. BEN 115 may be useful as a microbial source of cholesterol oxidase production.

Characterization of Ribose-5-Phosphate Isomerase B from Newly Isolated Strain Ochrobactrum sp. CSL1 Producing ʟ-Rhamnulose from ʟ-Rhamnose

  • Shen, Min;Ju, Xin;Xu, Xinqi;Yao, Xuemei;Li, Liangzhi;Chen, Jiajia;Hu, Cuiying;Fu, Jiaolong;Yan, Lishi
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1122-1132
    • /
    • 2018
  • In this study, we attempted to find new and efficient microbial enzymes for producing rare sugars. A ribose-5-phosphate isomerase B (OsRpiB) was cloned, overexpressed, and preliminarily purified successfully from a newly screened Ochrobactrum sp. CSL1, which could catalyze the isomerization reaction of rare sugars. A study of its substrate specificity showed that the cloned isomerase (OsRpiB) could effectively catalyze the conversion of $\text\tiny{L}$-rhamnose to $\text\tiny{L}$-rhamnulose, which was unconventional for RpiB. The optimal reaction conditions ($50^{\circ}C$, pH 8.0, and 1 mM $Ca^{2+}$) were obtained to maximize the potential of OsRpiB in preparing $\text\tiny{L}$-rhamnulose. The catalytic properties of OsRpiB, including $K_m$, $k_{cat}$, and catalytic efficiency ($k_{cat}/K_m$), were determined as 43.47 mM, $129.4sec^{-1}$, and 2.98 mM/sec. The highest conversion rate of $\text\tiny{L}$-rhamnose under the optimized conditions by OsRpiB could reach 26% after 4.5 h. To the best of our knowledge, this is the first successful attempt of the novel biotransformation of $\text\tiny{L}$-rhamnose to $\text\tiny{L}$-rhamnulose by OsRpiB biocatalysis.

Comparative Study of Proteolytic Activities of Some Commercial Milk Clotting Enzymes on Bovine Skim Milk (상업적 응유효소의 탈지유에 대한 단백질 분해 작용)

  • Shin, H.S.;Kim, S.B.;Lim, J.W.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.801-808
    • /
    • 2002
  • Proteolytic activities of some commercial milk clotting enzymes(rennet, trypsin, pepsin, papain W-40, neutrase 1.5 and protease S) in bovine skim milk containing 0.02% $CaCl_2$ were determined by measuring DH(Degree of Hydrolysis), NPN(Non Protein Nitrogen) and by comparing patterns of SDS-PAGE(Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis). The DH of microbial enzymes(neutrase 1.5 and protease S) and trypsin in bovine skim milk were higher than those of pepsin and papain W-40. The amounts of NPN in the milk treated with trypsin and the other animal enzymes(rennet and pepsin) showed the highest and lowest degrees of proteolysis, respectively. SDS-PAGE showed that trypsin and protease S hydrolyzed $\alpha$-lactalbumin and papain W-40 hydrolyzed $\beta$-lactoglobulin slightly, while neutrase 1.5 hydrolyzed both $\alpha$-lactalbumin and $\beta$-lactoglobulin after treating for 90 min. Trypsin and protease S easily hydrolyzed ${\alpha}_s$-casein and $\beta$-casein, which were not hydrolyzed by rennet. Papain W-40 hydrolyzed $\kappa$-casein more than rennet as shown in SDS-PAGE. Based on the results of the experiments, the DH and NPN of trypsin, neutrase 1.5 and protease S were shown to be higher than those of the other enzymes. The SDS-PAGE patterns of papain W-40 and neutrase 1.5 were similar with that of rennet.