• Title/Summary/Keyword: microbial contaminants

Search Result 92, Processing Time 0.02 seconds

Analysis of Microbial Contaminants and Microbial Changes during Dried-laver Pyropia spp. Processing (마른김(Pyropia spp.) 가공 공정 경과에 따른 미생물 오염도 분석)

  • Kwon, Kion;Ryu, Dae-Gyu;Jeong, Min-Chul;Kang, Eun-Hye;Jang, Yumi;Kwon, Ji Young;Kim, Jeong-Mok;Shin, Il-Shik;Kim, Young-Mog
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.1
    • /
    • pp.8-14
    • /
    • 2018
  • We investigated the levels of microbial contaminants and microbial hazards during dried-laver processing. We analyzed 321 samples obtained from 18 dried-laver Pyropia spp. manufacturing facilities, including water, swab-, and processing samples as well as final products. The levels of microbial contaminants, including viable cell counts (VCC) and coliform bacteria, increased as processing progressed. The sanitary indicator bacterium, Escherichia coli, was not detected in the final products although VCC levels were high, generally exceeding 5 log CFU/g. We also investigated changes in microbial contaminants at each processing step. Both VCC and total coliform dramatically increased after 4 days of continuous processing, indicating that microbial contaminants originated, mainly, from cross contamination during processing.

Microbial Metal Transformations

  • Gadd, Geoffrey M.
    • Journal of Microbiology
    • /
    • v.39 no.2
    • /
    • pp.83-88
    • /
    • 2001
  • There is considerable interest in how microbiological processes can affect the behaviour of metal contaminants in natural and engineered environments and their potential for bioremediation. The extent to which microorganisms can affect metal contaminants is dependent on the identity and chemical form of the metal and the physical and chemical nature of the contaminated site or substance. In general terms, microbial processes which solubilize metals increase their bioavailability and potential toxicity, whereas those that immobilize them reduce bioavailability. The balance between mobilization and immobilization varies depending on the metal, the organisms, their environment and physico-chemical conditions.

  • PDF

대표적 4개 오염지역의 수리지질 특성과 미생물학적 연구

  • 고경석;김재곤;조경숙;이상돈;염병우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.164-167
    • /
    • 2004
  • To investigate the chemical and microbiological characteristics of groundwater and surface waters in contaminated sites, hydrochemical and microbial community analysis were executed. Different indigenous bacteria were observed at 4 contaminated sites and this is considered to decompose the contaminants of groundwater. The research results showed the close relationship between hydrochemistry and microbial characteristics and those are used for the information of natural attenuation and enhanced bioremediation.

  • PDF

Effects of Metal and Metalloid Contamination on Microbial Diversity and Activity in Agricultural Soils

  • Tipayno, Sherlyn C.;Chauhan, Puneet S.;Woo, Sung-Man;Hong, Bo-Hee;Park, Kee-Woong;Chung, Jong-Bae;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.146-159
    • /
    • 2011
  • The continuous increase in the production of metals and their subsequent release into the environment has lead to increased concentration of these elements in agricultural soils. Because microbes are involved in almost every chemical transformations taking place in the soil, considerable attention has been given to assessing their responses to metal contaminants. Short-term and long-term exposures to toxic metals have been shown to reduce microbial diversity, biomass and activities in the soil. Several studies show that microbial parameters like basal respiration, metabolic quotient, and enzymatic activities, including those of oxidoreductases and those involved in the cycle of C, N, P and other elements, exhibit sensitivity to soil metal concentrations. These have been therefore, regarded as good indices for assessing the impact of metal contaminants to the soil. Metal contamination has also been extensively shown to decrease species diversity and cause shifts in microbial community structure. Biochemical and molecular techniques that are currently being employed to detect these changes are continuously challenged by several limiting factors, although showing some degree of sensitivity and efficiency. Variations and inconsistencies in the responses of bioindicators to metal stress in the soil can also be explained by differences in bioavailability of the metal to the microorganisms. This, in turn, is influenced by soil characteristics such as CEC, pH, soil particles and other factors. Therefore, aside from selecting the appropriate techniques to better understand microbial responses to metals, it is also important to understand the prevalent environmental conditions that interplay to bring about observed changes in any given soil parameter.

Toxigenic Fungal Contaminants in the 2009-harvested Rice and Its Milling-by products Samples Collected from Rice Processing Complexes in Korea (전국 미곡종합처리장에서 채집한 2009년산 쌀과 가공부산물 시료의 독소생성곰팡이 오염)

  • Son, Seung-Wan;Nam, Young-Ju;Lee, Seung-Ho;Lee, Soo-Min;Lee, Soo-Hyung;Kim, Mi-Ja;Lee, Theresa;Yun, Jong-Chul;Ryu, Jae-Gee
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.280-287
    • /
    • 2011
  • This investigation was undertaken to survey toxigenic fungal contamination of various rice samples in 93 rice processing complexes (RPC) in Korea. Rice was grown in 2009 and the samples were collected in 2010. Seven types of rice samples such as unhusked, brown, blue-tinged, discolored, polished, half-crushed, and rice husks were obtained from each RPC. One-hundred and five grains of each sample were placed on PDA plates after surface disinfection. The incidence of fungal contaminants was 26.8%. Aspergillus spp. was the most dominant fungal contaminants and Fusarium spp. was the most frequently occurred in samples. The heaviest Fusarium contamination was found in unhusked grain, rice husks, and bare blue-tinged rice and followed by colored rice whereas broken rice was the least contaminated. Regional difference of fungal contamination was distinctive. Fusarium incidence in the rice samples from southern region of Korea including Jeolla and Gyeongsang Provinces was higher than those from central region including Chungcheong, Gyeonggi, and Gangwon Provinces. In contrast to Fusarium spp., Aspergillus spp. and Penicillium spp. were dominated in brown and polished rice samples and their incidences were more severe in central region than southern region. The major contaminants shown more than 1% of kernels infected were Aspergillus (5.0%), Fusarium (2.0%), Alternaria (1.4%), Dreschlera (1.3%), Penicillium spp. (1.3%), and Nigrospora spp. (1.0%). Collectotrichum, Pyricularia, Myrothecium, Epicoccum, Cladosporium, Moniliella, Gloeocercospora, Chaeto- mium, Curvularia, Phialopora, Acremonium, Gliomastix, Trichoderma, Rhizopus, Phomopsis, Paecilomyces, Genicularia, Geotrichum, Acremoniella, Rhizoctonia, Phoma, Oidiodendran, and Candida spp. were among the rest observed at low incidence. The major contaminants of rice samples were well-known as toxigenic fungal genera so toxin producibility of these fungal isolates is necessary to be examined in future. It is also needed to study Myrothecium spp. on species level as it was detected for the first time in rice.

BIOLOGICAL REMEDIATION OF CONTAMINATED AQUIFER (오염지하수출의 미생물학적 복원기술)

  • 배우근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.12a
    • /
    • pp.1-18
    • /
    • 1992
  • The contaminatlon of soil and groundwater by leachate from impmperly managed landfills, or by cheiicals and gasoline leaked flu underground storage tanks has buou a serious urldwide environmental problei. Most of those contaminants are adsorptive and absorptive into soul, while they are hardly soluble in water. Thus, the rate of self purification is very slow, causing persistent problems in water use and environmental protection when the contamination is left untreated. Biological remediatlon technologies utilize the ertraordlnary caperbllity of microorganisms In degrading a tilde spectrum of organic compounds. Among them, an in situ bioremediation technology Involves injection of supplementary materials into the subsurfce in order to bring about a significant Increase in the microbial activity. The Increased microbial activity helps remove the pollutants in situ, that is, without digging out contaminants, soil, or water. This paper focused on the features, possibilities, and limitations of the bioremedition technology.

  • PDF

Direct-Current Based Remedial Technologies for Contaminated Soils and Groundwaters

  • Lee, Suk-Young;Lee, Chae-Young;Yoon, Jun-Ki;Kim, Kil-Hong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.3-6
    • /
    • 2002
  • Electron transfer is the major natural process governing the behavior of contaminants in soils and groundwaters. Biological degradation of contaminants, i.e., microbial transformation of hazardous compounds, is a well known irreversible electron transfer process. Although it is not well defined as a separate process, abiotic electron-transfer is also an important process for mobilizing/demobilizing inorganic contaminants in soils and groundwaters. Therefore, numerous remedial technologies have been developed on the basis of electron transfer concept. Among them,

  • PDF