• Title/Summary/Keyword: microbial cell growth

Search Result 301, Processing Time 0.026 seconds

Screening and Characterization of Lactate Dehydrogenase-producing Microorganism

  • Sung, Ha Guyn;Lee, Jae Heung;Shin, Hyung Tai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.10
    • /
    • pp.1411-1416
    • /
    • 2004
  • The objective of this work was to isolate a microorganism, able to produce high lactate dehydrogenase (LDH) activity, for use as a microbial feed additive. The LDH is an important enzyme for lactate conversion in the rumen, thereby possibly overcoming lactic acidosis owing to sudden increases of cereal in the diets of ruminants. In the present study, various bacterial strains were screened from a variety of environments. Among the isolated microorganisms, strain FFy 111-1 isolated from a Korean traditional fermented vegetable food called Kimchi showed the highest enzyme activity, along with retaining strong enzyme activity even in rumen fluid in vitro. Based on morphological and biochemical characteristics as well as compositions of cellular fatty acids plus API analyses, this strain was identified as Lactobacillus sp. The optimum temperature and pH for growth were found to be 30$^{\circ}C$ and pH 6.5, respectively. A maximum cell growth of 2.2 at $A_{650}$ together with LDH activity of 2.08 U per mL was achieved after 24 h of incubation. Initial characterization of FFy 111-1 suggested that it could be a potential candidate for use as a direct-fed microbial in the ruminant animals.

Formation and Production of Ascorbate Oxidase by Cucumber Tissue Cultured Cells (오이조직 배양세포에 의한 Ascorbate Oxidase 생성 및 생산)

  • Lee, Jong-Hwa;Chung, Ho-Kwon;Shinmyo, Atsuhiko;Lim, Bun-Sam
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.4
    • /
    • pp.329-335
    • /
    • 1993
  • Ascorbate oxidase activity in various cucumber tissue extracts was highest in young fruit peeling. Cucumber callus was induced from young fruit peeling and callus cell lines were selected for more than 7 months, which porduced high levels of ascorbate oxidase and had a high growth rate. Induction of callus was optimized with Linsmaier-Skoog(LS) medium at 25$^{\circ}C$ in dark phase. Ascorbate oxidase activity reached a maximum at 5 days after transfer to LS basal liquid-medium ant then declined. The enzyme activity in callus cells was stimulated by addition of 10${\mu}$M $CuSO_4$ in the early logarithmic phase of growth. And also, adding 10${\mu}$M $CuSO_4$ at 3rd day 7th day of culture period, ascorbate oxidase activity in callus cells was maintained to high level. Maximum yield of ascorbate oxidase was found at the 25th day by flask shaking culture, but three-fold of ascorbate oxidase activity was obtained at the 16th day by jar fermentation.

  • PDF

Quality Characteristics and Shelf-life of Rice Noodles Prepared with Red Ginseng Powder (홍삼 첨가에 따른 쌀국수의 품질특성과 저장성)

  • Kim, Eun-Mi
    • Culinary science and hospitality research
    • /
    • v.14 no.1
    • /
    • pp.161-169
    • /
    • 2008
  • This study was performed to find out the quality characteristics of rice noodles by addition of red ginseng(0, 2, 6, 10%). The quality characteristics of the sample were estimated in terms of general composition, growth of microorganism and sensory evaluation. The results from this study were as follows. The protein, lipid and ash contents did not show significant difference in any of the groups. In dry rice noodles, moisture content significantly decreased in red ginseng groups but, in half-cooked rice noodles, moisture content significantly increased in 6 % and 10% red ginseng added groups(p<0.05). The microbial count showed less growth in red ginseng added groups after 3 months(p<0.05). According to sensory evaluation, surface color proved very good in the 10% red ginseng added group among the training panel while very good in the 2% red ginseng added group among consumers. Flavor was good in red ginseng added groups(p<0.05). Taste was very good in the 3% red ginseng added group. Appearance and overall quality were highest in the 2% and 6% red ginseng added groups(p<0.05). Therefore, rice noodles containing 2% or 6% red ginseng were most preferable and safe during 5 months and 6 days in dry and half-cooked noodles respectively.

  • PDF

Poly-$\beta$-Hydroxybutyrate Produced by Pink-Pigmented Facultative Methylotrophic Bacterium from Methanol (분홍색 통성 메탄올 자화세균이 생산하는 Poly-$\beta$-Hydroxybutyrate)

  • 송미연;이재호;이용현
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.3
    • /
    • pp.273-279
    • /
    • 1990
  • For poly- $\beta$ -hydroxybutyrate (PHB) production, a pink-pigmented facultative methylotrophic bacterium (PPFM) P-10 was newly isolated from soils through methanol-enrichment culture. The optimal medium composition for cell growth was 1.0% (vlv) of methanol as carbon source and l.Og/l of ,TEX>$NH_4Cl$, equivalent to C/N ratio of 13.2 at pH 7.0 and $30^{\circ}C$. To investigate the optimal condition for YHB accumulation, two-stage culture technique was adopted; first stage for cell growth and second stage for accumulation of PHB providing unbalanced growth conditions. The optimal PHB accumulation was 1.0% (vIv) of methanol and 0.26gll of $NH_4Cl$, C/N of 50.8 at pH 6.0. To overcome methanol inhibition on cell growth, intermittent feeding fed-batch culture technique was employed, and the cell concentration as high as 14gll with 40% of PHB was achieved. The purified PHB was identified using IR and $1^H NMR$ as homopolymer of 8hydroxybutyric acid. The absorption spectrum of extracted pink colored microbial pigment was alsa investigated.

  • PDF

Selection of mutant Phaffia rhodozyma and Determination of Optimum Culture Conditions for Astaxanthin Production (Astaxanthin 생산을 위한 Phaffia rhodozyma의 변이균주 선발과 최적 배양조건 결정)

  • 유성선;유연우
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.2
    • /
    • pp.96-103
    • /
    • 2001
  • Phaffia rhodozyma is the most promising microbial source of astaxanthin production, though wild-type strains are needed to increase the astaxanthin content for commercial production. To increase astaxanthin content for commercial production, a mutant strain of P. rhodozyma was selected and culture conditions of the mutant selected were optimized. P. rhodozyma was treated with mutagenic agent such as NTG, acriflavine, and UV in serial order and carotenoids hyper-producing mutant strain was selected based on the capabilities of cell growth on the agar plate containing chemical inhibitors and carotenoids production. Among the mutants tested, a mutant WS-2 was finally selected. Mutant WS-2 produced 1.26mg carotenoids/g-dry cell weight and this value was about- 4-folds higher than that of wild-type. The optimum culture conditions were $24^{\circ}C$ of temperature, 1.5vvm of aeration and 300rpm of agitation. In the optimized condition, cell and carotenoids concentrations were 7.62g/l and 14.9mg/l, respectively.

  • PDF

Phototrophic Bacteria as Fish Feed Supplement

  • Banerjee, S.;Azad, S.A.;Vikineswary, S.;Selvaraj, O.S.;Mukherjee, T.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.7
    • /
    • pp.991-994
    • /
    • 2000
  • Single cell of an indigenous phototrophic bacterium, Rhodovulum sulfidophilum, was incorporated in commercial fish feed for Oreochromis niloticus. The bacterial cell was analyzed for nutritional value and tested for toxicity and acceptability as an aquaculture feed supplement. The results showed higher survival rate and significantly higher growth rate (p<0.001) in O. niloticus fed with the bacteria incorporated fish feed. It is suggested that R sulfidophilum can be utilized as an aquaculture feed supplement.

How Do Bacteria Maximize Their Cellular Assets?

  • Kim, Juhyun
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.478-484
    • /
    • 2021
  • Cellular resources including transcriptional and translational machineries in bacteria are limited, yet microorganisms depend upon them to maximize cellular fitness. Bacteria have evolved strategies for using resources economically. Regulatory networks for the gene expression system enable the cell to synthesize proteins only when necessary. At the same time, regulatory interactions enable the cell to limit losses when the system cannot make a cellular profit due to fake substrates. Also, the architecture of the gene expression flow can be advantageous for clustering functionally related products, thus resulting in effective interactions among molecules. In addition, cellular systems modulate the investment of proteomes, depending upon nutrient qualities, and fast-growing cells spend more resources on the synthesis of ribosomes, whereas nonribosomal proteins are synthesized in nutrient-limited conditions. A deeper understanding of cellular mechanisms underlying the optimal allocation of cellular resources can be used for biotechnological purposes, such as designing complex genetic circuits and constructing microbial cell factories.

Characteristic study and optimization of culture conditions for Bacillus amyloliquefaciens SRCM 100731 as probiotic resource for companion animal (Bacillus amyloliquefaciens SRCM 100731의 반려 동물용 프로바이오틱스 소재로서의 특성 규명 및 배양 조건 최적화)

  • Ryu, Myeong Seon;Yang, Hee-Jong;Jeong, Su-Ji;Seo, Ji Won;Ha, Gwangsu;Jeong, Seong-Yeop;Jeong, Do-Youn
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.384-397
    • /
    • 2018
  • The aim of this study is to screen the strains of Bacillus spp. possessing safety, probiotic activity, and so on, which can be utilized as probiotic resource for using the feed and supplement food of companion animal. About 300 isolates were isolated from traditional Korean sauces, four isolates that did not have or produce the six kinds of B. cereus type vomiting and diarrhea toxin genes, ${\beta}$-hemolytic, and three kinds of carcinogenic enzymes were selected. Antibiotic gene retention, cell surface hydrophobicity, antibiotic sensitivity, and glucose utilization were analyzed for four isolates, and finally SRCM 100731 was selected. SRCM 100731 was named as Bacillus amyloliquefaciens SRCM 100731 16S rRNA sequencing analysis, and carried out optimization of cell growth for industrial applications such as pet food and feed. The effects of 14 different components on cell growth were investigated and three significant positive factors, molasses, sodium chloride, and potassium chloride were selected as the main factors based on a Plackett-Burman design. In order to find out optimal concentration on each constituent, we carried out central composite design. The predicted optimized concentrations were 7% molasses, 1.1% sodium chloride, 0.5% potassium chloride. Finally, an overall about 7-fold increase in dry cell weight yield ($12.6625{\pm}0.0658g/L$) was achieved using the optimized medium compared with the non-optimized medium ($1.8273{\pm}0.0214g/L$). This research is expected to be highly utilized in the growing pet industry by establishing optimal cultivation conditions for industrial application as well as screening Bacillus amyloliquefaciens SRCM 100731 as probiotic resource for companion animal.

Gellan-type Microbial Polysaccharide Production in Continuous Fermentation (Gellan형 미생물 다당류의 연속생산)

  • 정봉우;이은미장광엽김춘영
    • KSBB Journal
    • /
    • v.9 no.1
    • /
    • pp.85-90
    • /
    • 1994
  • The Gellan-type polysaccharide produced by Pseudomonas elodea(ATCC 31461) is one of the new heteropolysaccharides, having useful properties as gelling, suspending, stabilizing, emulsifying and binding agents in aqueous systems. Medium compositions for growth stage and production stage are improved. The problems of low cell concentration and poor productivity in highly viscous fermentation were attributed to inadequate mixing accompanied by insufficient oxygen transfer. During continuous culture, cell growth and polysaccharide production were greatly affected by the apparent viscosity, and they showed oscillation behavior, i.e. as the product concentration increases, cell concentration decreases. With improved culture conditions, the productivity of continuous culture increased up to 0.6g/$\ell$/hr(6-fold that of batch culture ) at dilution rate, D=$0.14hr^{-1}$.

  • PDF

Selective Plugging Strategy Based Microbial Enhanced Oil Recovery Using Bacillus licheniformis TT33

  • Suthar, Harish;Hingurao, Krushi;Desai, Anjana;Nerurkar, Anuradha
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1230-1237
    • /
    • 2009
  • The selective plugging strategy of Microbial Enhanced Oil Recovery (MEOR) involves the use of microbes that grow and produce exopolymeric substances, which block the high permeability zones of an oil reservoir, thus allowing the water to flow through the low permeability zones leading to increase in oil recovery. Bacillus licheniformis TT33, a hot water spring isolate, is facultatively anaerobic, halotolerant, and thermotolerant. It produces EPS as well as biosurfactant and has a biofilm-forming ability. The viscosity of its cell-free supernatant is $120\;mPa{\cdot}s$ at $28^{\circ}C$. Its purified EPS contained 26% carbohydrate and 3% protein. Its biosurfactant reduced the surface tension of water from 72 to 34 mN/m. This strain gave $27.7{\pm}3.5%$ oil recovery in a sand pack column. Environmental scanning electron microscopy analysis showed bacterial growth and biofilm formation in the sand pack. Biochemical tests and Amplified Ribosomal DNA Restriction Analysis confirmed that the oil recovery obtained in the sand pack column was due to Bacillus licheniformis TT33.