• 제목/요약/키워드: microbial activity and structure

Search Result 102, Processing Time 0.034 seconds

Lessons from the Sea : Genome Sequence of an Algicidal Marine Bacterium Hahella chehuensis (적조 살상 해양 미생물 Hahella chejuensis의 유전체 구조)

  • Jeong Hae-Young;Yoon Sung-Ho;Lee Hong-Kum;Oh Tae-Kwang;Kim Ji-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • Harmful algal blooms (HABs or red tides), caused by uncontrolled proliferation of marine phytoplankton, impose a severe environmental problem and occasionally threaten even public health. We sequenced the genome of an EPS-producing marine bacterium Hahella chejuensis that produces a red pigment with the lytic activity against red-tide dinoflagellates at parts per billion level. H. chejuensis is the first sequenced species among algicidal bacteria as well as in the order Oceanospirillales. Sequence analysis indicated a distant relationship to the Pseudomonas group. Its 7.2-megabase genome encodes basic metabolic functions and a large number of proteins involved in regulation or transport. One of the prominent features of the H. chejuensis genome is a multitude of genes of functional equivalence or of possible foreign origin. A significant proportion (${\sim}23%$) of the genome appears to be of foreign origin, i.e. genomic islands, which encode genes for biosynthesis of exopolysaccharides, toxins, polyketides or non-ribosomal peptides, iron utilization, motility, type III protein secretion and pigment production. Molecular structure of the algicidal pigment was determined to be prodigiosin by LC-ESI-MS/MS and NMR analyses. The genomics-based research on H. chejuensis opens a new possibility for controlling algal blooms by exploiting biotic interactions in the natural environment and provides a model in marine bioprospecting through genome research.

Dual Role of Acidic Diacetate Sophorolipid as Biostabilizer for ZnO Nanoparticle Synthesis and Biofunctionalizing Agent Against Salmonella enterica and Candida albicans

  • Basak, Geetanjali;Das, Devlina;Das, Nilanjana
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.87-96
    • /
    • 2014
  • In the present study, a yeast species isolated from CETP, Vellore, Tamilnadu was identified as Cryptococcus sp. VITGBN2 based on molecular techniques and was found to be a potent producer of acidic diacetate sophorolipid in mineral salt media containing vegetable oil as additional carbon source. The chemical structure of the purified biosurfactant was identified as acidic diacetate sophorolipid through GC-MS analysis. This sophorolipid was used as a stabilizer for synthesis of zinc oxide nanoparticles (ZON). The formation of biofunctionalized ZON was characterized using UV-visible spectroscopy, XRD, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy. The antimicrobial activities of naked ZON and sophorolipid functionalized ZON were tested based on the diameter of inhibition zone in agar well diffusion assay, microbial growth rate determination, protein leakage analysis, and lactate dehydrogenase assay. Bacterial pathogen Salmonella enterica and fungal pathogen Candida albicans showed more sensitivity to sophorolipid biofunctionalized ZON compared with naked ZON. Among the two pathogens, S. enterica showed higher sensitivity towards sophorolipid biofunctionalized ZON. SEM analysis showed that cell damage occurred through cell elongation in the case of S. enterica, whereas cell rupture was found to occur predominantly in the case of C. albicans. This is the first report on the dual role of yeast-mediated sophorolipid used as a biostabilizer for ZON synthesis as well as a novel functionalizing agent showing antimicrobial property.

Enhanced Natural Purification of Crude Oil Contaminated Tidal Flat (원유로 오염된 갯벌 지역의 자연정화 기능 향상 기술의 개발)

  • Kim, Young-A;Sung, Ki-June
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.5
    • /
    • pp.24-30
    • /
    • 2011
  • Tidal flats which are ecologically sensitive, are hard to remediate once they are contaminated by oil spill accidents. Traditional oil remediation measures focus on removal efficiency, and their improper implementation can adversely affect crude oil contaminated coastal areas and greatly disrupt the structure and functions of crude oil contaminated tidal flats. In this study, the oil degradation due to the implementation of remediation measures naturally enhanced using air and natural oil sorbents was evaluated in the lower strata of tidal flats. The effects of air and natural oil sorbents on oil degradation for two concentration levels (< 500 ppm and > 500 ppm) were tested at artificially contaminated tidal flats. Fifty days after these treatments, the natural oil sorbent treatment showed the lowest total petroleum hydrocarbon (TPH) concentration ($4.46{\pm}1.47%$) at the low concentration level, whereas both air and natural oil sorbent treatments showed high degradation efficiencies at the high concentration level ($29.30{\pm}4.39%$). Although the phosphatase activity decreased for all treatments, there was no significant difference between the decreases for the different treatments; on the other hand, B-glucosidase activities were high for both air and natural oil sorbent treatments. Although degradation efficiencies decreased as the concentration increased, the air provision and natural oil sorbent treatment could be an effective ecological restoration measure for oil contaminated tidal flats while minimizing the environmental impact of the remediation efforts.

Effects of Vessel on the Quality Changes during Fermentation of Kochujang (고추장의 숙성 중 발효 용기가 품질변화에 미치는 영향)

  • Chung Sun-Kyung;Kim Young-Sook;Lee Dong Sun
    • Food Science and Preservation
    • /
    • v.12 no.3
    • /
    • pp.292-298
    • /
    • 2005
  • Kochujang(Korean red pepper paste) of 600 g was fermented in the different types of vessels (glass, polypropylene(PP), polyethylene terephthalate(PET), stainless steel and Korean porcelain called onggi) with 627 mL of volume during 4 months. The quality changes were monitored for physical, chemical and microbiological attributes. Onggi which had high porosity in the micro-structure provided kochujang with higher microbial counts of aerobic bacteria, lactic acid bacteria and yeasts than those of the other containers. Compared to kochujang fermented in the other containers, kochujang in Onggi showed higher protease activity, amino type nitrogen, and free amino acid content. The kochujang in Onggi also attained higher acidity, lower pH and higher reducing sugar concentration than those in the other containers. All changes were completed 2 or 3 months. Onggi showed water loss and salt increase of the kochujang comparable to those in the other vessels, which was from gradual clogging of the micropores during storage. All physical, chemical and microbiological changes made the kochujang in Onggi attain the sensory quality significantly better than those fermented in the other vessels.

An Experimental Study on Indoor Pollutant Reduction of Cementitious Composite Using Charcoal and Phytoncide (숯과 피톤치드를 사용한 시멘트계 복합재의 실내 오염물질 저감에 관한 실험적 연구)

  • Jeong, Hyeon-Woo;Jeong, We-Young;Jung, Yoong-Hoon;Han, Song-Yi;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.13-19
    • /
    • 2021
  • In modern society, indoor activities time is increasing due to industrial development. Interest in indoor air quality is increasing as indoor activity time increases. The main causes of indoor air pollution are formaldehyde which a chemical cause, and fungi which a biological cause. Phytoncide effectively reduces Formaldehyde and Fungi. Charcoal which possess porous-structure has a good absorbance of pollutants. In this study, the authors manufactured functional cement matrix using by phytoncide and charcoal to remove formaldehyde and fungi. In this study, Functional cement matrix reduced formaldehyde and Fungi and effectively improve indoor air quality.

Effect of oral spray with Lactobacillus on growth performance, intestinal development and microflora population of ducklings

  • Zhang, Qi;Jie, Yuchen;Zhou, Chuli;Wang, Leyun;Huang, Liang;Yang, Lin;Zhu, Yongwen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.456-464
    • /
    • 2020
  • Objective: The aim of this study is to investigate the effect of oral spray with probiotics on the intestinal development and microflora colonization of hatched ducklings. Methods: In Exp. 1, an one-way factorial design was used to study the antibacterial activity of the probiotics and metabolites on Escherichia coli (E. coli) without antimicrobial resistance. There were four experimental groups including saline as control and Lactobacillus, Bacillus subtilis, combined Lactobacillus and Bacillus subtilis groups. In Exp. 2, 64-day-old ducklings were allotted to 2 treatments with 4 replicated pens. Birds in the control group were fed a basal diet supplemented with Lactobacillus fermentation in the feed whereas birds in the oral spray group were fed the basal diet and administrated Lactobacillus fermentation by oral spray way during the first week. Results: In Exp. 1, the antibacterial activities of probiotics and metabolites on E. coli were determined by the diameter of inhibition zone in order: Lactobacillus>combined Lactobacillus and Bacillus subtilis>Bacillus subtilis. Additionally, compared to E. coli without resistance, E. coli with resistance showed a smaller diameter of inhibition zones. In Exp. 2, compared to control feeding group, oral spray group increased (p<0.05) the final body weight at d 21 and average daily gain for d 1-21 and the absolute weight of the jejunum, ileum and total intestine tract as well as cecum Lactobacillus amount at d 21. Conclusion: Lactobacillus exhibited a lower antibacterial activity on E. coli with resistance than E. coli without resistance. Oral spray with Lactobacillus fermentation during the first week of could improve the intestinal development, morphological structure, and microbial balance to promote growth performance of ducklings from hatch to 21 d of age.

Screening and isolation of antibacterial proteinaceous compounds from flower tissues: Alternatives for treatment of healthcare-associated infections

  • de Almeida, Renato Goulart;Silva, Osmar Nascimento;de Souza Candido, Elizabete;Moreira, Joao Suender;Jojoa, Dianny Elizabeth Jimenez;Gomes, Diego Garces;de Souza Freire, Mirna;de Miranda Burgel, Pedro Henrique;de Oliveira, Nelson Gomes Junior;Valencia, Jorge William Arboleda;Franco, Octavio Luiz;Dias, Simoni Campos
    • CELLMED
    • /
    • v.4 no.1
    • /
    • pp.5.1-5.8
    • /
    • 2014
  • Healthcare-associated infection represents a frequent cause of mortality that increases hospital costs. Due to increasing microbial resistance to antibiotics, it is necessary to search for alternative therapies. Consequently, novel alternatives for the control of resistant microorganisms have been studied. Among them, plant antimicrobial protein presents enormous potential, with flowers being a new source of antimicrobial molecules. In this work, the antimicrobial activity of protein-rich fractions from flower tissues from 18 different species was evaluated against several human pathogenic bacteria. The results showed that protein-rich fractions of 12 species were able to control bacterial development. Due its broad inhibition spectrum and high antibacterial activity, the protein-rich fraction of Hibiscus rosa-sinensis was subjected to DEAE-Sepharose chromatography, yielding a retained fraction and a non-retained fraction. The retained fraction inhibits 29.5% of Klebsiella pneumoniae growth, and the non-retained fraction showed 31.5% of growth inhibition against the same bacteria. The protein profile of the chromatography fractions was analyzed by using SDS-PAGE, revealing the presence of two major protein bands in the retained fraction, of 20 and 15 kDa. The results indicate that medicinal plants have the biotechnological potential to increase knowledge about antimicrobial protein structure and action mechanisms, assisting in the rational design of antimicrobial compounds for the development of new antibiotic drugs.

In vivo Antifungal Activity of Pyrrolnitrin Isolated from Burkholderia capacia EB215 with Antagonistic Activity Towards Colletotrichum Species (탄저병균에 대하여 길항작용을 보이는 Burkholderia cepacia EB215로부터 분리한 Pyrrolnitrin의 항균활성)

  • Park, Ji-Hyun;Choi, Gyung-Ja;Lee, Seon-Woo;Jang, Kyoung-Soo;Choi, Yong-Ho;Chung, Young-Ryun;Cho, Kwang-Yun;Kim, Jin-Cheol
    • The Korean Journal of Mycology
    • /
    • v.32 no.1
    • /
    • pp.31-38
    • /
    • 2004
  • An endophytic bacterial strain EB215 that was isolated from cucumber (Cucumis sativus) roots displayed a potent in vivo antifungal activity against Colletotrichum species. The strain was identified as Burkholderia cepacia based on its physiological and biochemical characteristics, and 16S rDNA gene sequence. Optimal medium and incubation period for the production of antifungal substances by B. cepacia EB215 were nutrient broth (NB) and 3 days, respectively. An antifungal substance was isolated from the NB cultures of B. cepacia EB215 strain by centrifugation, n-hexane partitioning, silica gel column chromatography, preparative TLC, and in vitro bioassay. Its chemical structure was determined to be pyrrolnitrin by mass and NMR spectral analyses. Pyrrolnitrin showed potent disease control efficacy of more than 90% against pepper anthracnose (Colletotrichum coccodes), cucumber anthracnose (Colletotrichum orbiculare), rice blast (Magnaporthe grisea) and rice sheath blight (Corticium sasaki) even at a low concentration of $11.1\;{\mu}g/ml$. In addition, it effectively controlled the development of tomato gray mold (Botrytis cinerea) and wheat leaf rust (Puccinia recondita) at concentrations over $33.3\;{\mu}g/ml$. However, it had no antifungal activity against Phytophthora infestans on tomato plants. Further studies on the development of microbial fungicide using B. cepacia EB215 are in progress.

Phylogenetic Diversity and Community Structure of Microbiome Isolated from Sargassum Horneri off the Jeju Island Coast (제주 연안의 괭생이모자반(Sargassum horneri)에서 분리된 세균의 계통학적 다양성 및 군집 구조 분석)

  • Moon, Kyung-Mi;Park, So-Hyun;Heo, Moon-Soo
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1179-1185
    • /
    • 2018
  • Recently, Sargassum horneri, the marine weed inhabiting the shoreline, beach, and littoral sea area, has caused serious damage to intensive aquaculture farms particularly those around Jeju Island, South Korea. The purpose of this study was to investigate the diversity of microorganisms in Sargassum horneri and to provide basic data on ecological problems by identifying microbial functions. A total of 88 isolates were identified by 16S rRNA sequencing. Proteobacteria was the dominant phylum accounting for 88%, including class ${\alpha}-proteobacteria$, six genera, and ten species. The dominating genus, Pseudobacter, accounted for 40% in Pseudorhodobacter, 20% in Paracoccus, and the remaining at 10% each were Rhizobium, Albirhodobacter, Skermanella, and Novosphingobium. Class ${\beta}-proteobactera$ included five genera and ten species. Genus Hydrogenophaga accounted for 50%, while genus Azoarcus accounted for 20%, and the remaining Oxalicibacterium, Duganella, and Xenophilus were 10% each. Class ${\gamma}-proteobacteria$ with 13 genera and 57 species, accounted for 74% in phylum Proteobacteria, 23% in Shewanella, 19% in Cobetia, 12% in Pseudomonas, 4% each in Vibrio and Serratia, and 2% each in Rheinheimera, Raoultella, Pantoea, Acinetobacter, Moraxella, and Psychrobacter genera. In addition, Actinobacteria with two species of Nocardioides genera accounted for 50%, and Bacteroidetes accounted for 33%, with three genera and five species that included Lacihabitans and Mariniflexile. The remaining Dyadobacter, Cellulophaga, and Ferruginibacter genera each accounted for 11%.

Effects of Sediment Harvesting on Bacterial Community Structure (골재채취가 세균군집구조에 미치는 영향)

  • Park, Ji-Eun;Lee, Young-Ok
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.2 s.62
    • /
    • pp.172-178
    • /
    • 2006
  • The dynamics of bacterial populations belonging to $\alpha\;\beta\;\gamma-subclass$ proteobacteria, Cytophaga-Flavobacterium (CF) group and sulfate reducing bacteria (SRB) in water column of the middle reaches of Nakdong River depending on sediment harvesting were analyzed by fluorescent in situ hybridization (FISH) at sediment harvesting site (near the Seongju bridge) and non-sediment harvesting site (near the Gumi bridge). In addition, some physico-chemical parameters such as temperature, pH, $chi-\alpha$ and electrical conductivity were measured. Regarding the number of total cell counts, cells stained by DAPI, there were no substantial quantitative differences between both sites, but those fluctuation at sediment Harvesting site was greater. And also the ratios of CFgroup and SRB to total cell counts tend to increase at sediment harvesting site with higher $chl-\alpha$, maybe due to the resuspension of sediment into water column. But the total proportion of all determined bacterial populations to total cell counts were greater at non-sediment harvesting site, compared with those at sediment harvesting site. Since the detectibility of bacteria by FISH depends on their metabolic activity, those lower proportion at the sediment harvesting site implies that sediment harvesting may lead to malfunction of those bacteria respect to nutrient recycling and subsequently negative effects on microbial food web.