• Title/Summary/Keyword: microarray data analysis

검색결과 326건 처리시간 0.02초

A Clustering Approach for Feature Selection in Microarray Data Classification Using Random Forest

  • Aydadenta, Husna;Adiwijaya, Adiwijaya
    • Journal of Information Processing Systems
    • /
    • 제14권5호
    • /
    • pp.1167-1175
    • /
    • 2018
  • Microarray data plays an essential role in diagnosing and detecting cancer. Microarray analysis allows the examination of levels of gene expression in specific cell samples, where thousands of genes can be analyzed simultaneously. However, microarray data have very little sample data and high data dimensionality. Therefore, to classify microarray data, a dimensional reduction process is required. Dimensional reduction can eliminate redundancy of data; thus, features used in classification are features that only have a high correlation with their class. There are two types of dimensional reduction, namely feature selection and feature extraction. In this paper, we used k-means algorithm as the clustering approach for feature selection. The proposed approach can be used to categorize features that have the same characteristics in one cluster, so that redundancy in microarray data is removed. The result of clustering is ranked using the Relief algorithm such that the best scoring element for each cluster is obtained. All best elements of each cluster are selected and used as features in the classification process. Next, the Random Forest algorithm is used. Based on the simulation, the accuracy of the proposed approach for each dataset, namely Colon, Lung Cancer, and Prostate Tumor, achieved 85.87%, 98.9%, and 89% accuracy, respectively. The accuracy of the proposed approach is therefore higher than the approach using Random Forest without clustering.

A note on Box-Cox transformation and application in microarray data

  • Rahman, Mezbahur;Lee, Nam-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권5호
    • /
    • pp.967-976
    • /
    • 2011
  • The Box-Cox transformation is a well known family of power transformations that brings a set of data into agreement with the normality assumption of the residuals and hence the response variable of a postulated model in regression analysis. Normalization (studentization) of the regressors is a common practice in analyzing microarray data. Here, we implement Box-Cox transformation in normalizing regressors in microarray data. Pridictabilty of the model can be improved using data transformation compared to studentization.

Cancer Genomics Object Model: An Object Model for Cancer Research Using Microarray

  • Park, Yu-Rang;Lee, Hye-Won;Cho, Sung-Bum;Kim, Ju-Han
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.29-34
    • /
    • 2005
  • DNA microarray becomes a major tool for the investigation of global gene expression in all aspects of cancer and biomedical research. DNA microarray experiment generates enormous amounts of data and they are meaningful only in the context of a detailed description of microarrays, biomaterials, and conditions under which they were generated. MicroArray Gene Expression Data (MGED) society has established microarray standard for structured management of these diverse and large amount data. MGED MAGE-OM (MicroArray Gene Expression Object Model) is an object oriented data model, which attempts to define standard objects for gene expression. To assess the relevance of DNA microarray analysis of cancer research it is required to combine clinical and genomics data. MAGE-OM, however, does not have an appropriate structure to describe clinical information of cancer. For systematic integration of gene expression and clinical data, we create a new model, Cancer Genomics Object Model.

  • PDF

A Study of HME Model in Time-Course Microarray Data

  • Myoung, Sung-Min;Kim, Dong-Geon;Jo, Jin-Nam
    • 응용통계연구
    • /
    • 제25권3호
    • /
    • pp.415-422
    • /
    • 2012
  • For statistical microarray data analysis, clustering analysis is a useful exploratory technique and offers the promise of simultaneously studying the variation of many genes. However, most of the proposed clustering methods are not rigorously solved for a time-course microarray data cluster and for a fitting time covariate; therefore, a statistical method is needed to form a cluster and represent a linear trend of each cluster for each gene. In this research, we developed a modified hierarchical mixture of an experts model to suggest clustering data and characterize each cluster using a linear mixed effect model. The feasibility of the proposed method is illustrated by an application to the human fibroblast data suggested by Iyer et al. (1999).

Effect of Normalization on Detection of Differentially-Expressed Genes with Moderate Effects

  • Cho, Seo-Ae;Lee, Eun-Jee;Kim, Young-Chul;Park, Tae-Sung
    • Genomics & Informatics
    • /
    • 제5권3호
    • /
    • pp.118-123
    • /
    • 2007
  • The current existing literature offers little guidance on how to decide which method to use to analyze one-channel microarray measurements when dealing with large, grouped samples. Most previous methods have focused on two-channel data;therefore they can not be easily applied to one-channel microarray data. Thus, a more reliable method is required to determine an appropriate combination of individual basic processing steps for a given dataset in order to improve the validity of one-channel expression data analysis. We address key issues in evaluating the effectiveness of basic statistical processing steps of microarray data that can affect the final outcome of gene expression analysis without focusingon the intrinsic data underlying biological interpretation.

행렬도를 이용한 유전자발현자료의 탐색적 분석 (Exploratory Analysis of Gene Expression Data Using Biplot)

  • 박미라
    • 응용통계연구
    • /
    • 제18권2호
    • /
    • pp.355-369
    • /
    • 2005
  • 마이크로어레이 실험에서는 유전자의 기능과 상호작용의 이해를 돕기 위한 방안으로 유전자발현자료의 시각화방법이 많이 사용되고 있다. 행렬도는 유전자와 샘플들을 동시에 그려볼 수 있어서, 유전자 또는 샘플의 군집이나 유전자-샘플간 연관작용을 알아보는데 더욱 유용하게 쓰일 수 있다. 본고에서는 마이크로어레이실험에서 행렬도를 이용하여 유전자의 군집 및 연관성을 알아보는 방법을 소개하고, 추가점기법을 이용하여 새로운 샘플을 분류하는 방법을 제안하였다. Golub et al.(1999)의 백혈병 데이터와 Alizadeh et al. (2000)의 림프구데이터, Ross et al.(2000)의 NCI60 종양조직데이터를 이용하여 유용성을 살펴보았으며, 계층적 군집분석 및 k-평균 군집분석 등 다른 기법을 이용한 결과와 비교하고 이러한 기법을 행렬도와 연계하는 방안을 살펴보았다.

Poor Correlation Between the New Statistical and the Old Empirical Algorithms for DNA Microarray Analysis

  • Kim, Ju Han;Kuo, Winston P.;Kong, Sek-Won;Ohno-Machado, Lucila;Kohane, Isaac S.
    • Genomics & Informatics
    • /
    • 제1권2호
    • /
    • pp.87-93
    • /
    • 2003
  • DNA microarray is currently the most prominent tool for investigating large-scale gene expression data. Different algorithms for measuring gene expression levels from scanned images of microarray experiments may significantly impact the following steps of functional genomic analyses. $Affymetrix^{(R)}$ recently introduced high-density microarrays and new statistical algorithms in Microarray Suit (MAS) version 5.0$^{(R)}$. Very high correlations (0.92 - 0.97) between the new algorithms and the old algorithms (MAS 4.0) across several species and conditions were reported. We found that the column-wise array correlations had a tendency to be much higher than the row-wise gene correlations, which may be much more meaningful in the following higher-order data analyses including clustering and pattern analyses. In this paper, not only the detailed comparison of the two sets of algorithms is illustrated, but the impact of the introducing new algorithms on the further clustering analysis of microarray data and of possible pitfalls in mixing the old and the new algorithms were also described.

직교요인을 이용한 국소선형 로지스틱 마이크로어레이 자료의 판별분석 (Local Linear Logistic Classification of Microarray Data Using Orthogonal Components)

  • 백장선;손영숙
    • 응용통계연구
    • /
    • 제19권3호
    • /
    • pp.587-598
    • /
    • 2006
  • 본 논문에서는 마이크로어레이 (microarray) 자료에 판별분석을 적용 시 나타나는 고차원 및 소표본 문제의 해결방법으로서 직교요인을 새로운 특징변수로 사용한 비모수적 국소선형 로지스틱 판별분석을 제안한다. 제안된 방법은 국소우도에 기반한 것으로서 다범주 판별분석에 적용될 수 있으며, 고려된 직교인자는 주성분 요인, 부분최소제곱 요인, 인자분석 요인 등이다. 대표적인 두 가지 실제 마이크로어레이 자료에 적용한 결과 직교요인들 중에서 부분최소제곱 요인을 특징변수로 사용한 경우 고전적인 통계적 판별분석보다 향상된 분류 능력을 나타내고 있음을 확인하였다.

Feature Selection via Embedded Learning Based on Tangent Space Alignment for Microarray Data

  • Ye, Xiucai;Sakurai, Tetsuya
    • Journal of Computing Science and Engineering
    • /
    • 제11권4호
    • /
    • pp.121-129
    • /
    • 2017
  • Feature selection has been widely established as an efficient technique for microarray data analysis. Feature selection aims to search for the most important feature/gene subset of a given dataset according to its relevance to the current target. Unsupervised feature selection is considered to be challenging due to the lack of label information. In this paper, we propose a novel method for unsupervised feature selection, which incorporates embedded learning and $l_{2,1}-norm$ sparse regression into a framework to select genes in microarray data analysis. Local tangent space alignment is applied during embedded learning to preserve the local data structure. The $l_{2,1}-norm$ sparse regression acts as a constraint to aid in learning the gene weights correlatively, by which the proposed method optimizes for selecting the informative genes which better capture the interesting natural classes of samples. We provide an effective algorithm to solve the optimization problem in our method. Finally, to validate the efficacy of the proposed method, we evaluate the proposed method on real microarray gene expression datasets. The experimental results demonstrate that the proposed method obtains quite promising performance.

시간 경로 마이크로어레이 자료의 군집 분석에 관한 고찰 (A Review of Cluster Analysis for Time Course Microarray Data)

  • 손인석;이재원;김서영
    • 응용통계연구
    • /
    • 제19권1호
    • /
    • pp.13-32
    • /
    • 2006
  • 생물학자들은 시간에 따라 발현 수준이 변화하는 유전자의 군집화를 시도하고 있다. 지금까지는 마이크로어레이 자료의 군집분석에 관한 연구의 경우 군집 방법 자체를 비교하는 연구가 주를 이루었다. 그러나 군집화 이전에 의미있는 변화를 보이는 유전자 선택에 따라 군집화 결과가 달라지기 때문에, 군집 분석에 있어서 유전자 선택 단계도 중요하게 고려되어야 한다. 따라서, 본 논문에서는 시간 경로 마이크로어레이 자료를 군집 분석하는데 있어서 유전자 선택, 군집 방법 선택, 군집평가 방법 선택 등 3가지 요인을 고려한 폭 넓은 비교 연구를 하였다.