• Title/Summary/Keyword: microLion 액체 전리함

Search Result 3, Processing Time 0.022 seconds

Determining Ion Collection Efficiency in a Liquid Ionization Chamber in Co-60 Beam (Co-60 빔에서 액체 전리함의 이온 수집 효율 결정 연구)

  • Choi, Sang Hyoun;Kim, Chan Hyeong
    • Progress in Medical Physics
    • /
    • v.25 no.1
    • /
    • pp.46-52
    • /
    • 2014
  • Liquid ionization chamber is filled with liquid equivalent material unlike air filled ionization chamber. The high density material allow very small-volume chamber to be constructed that still have a sufficiently high sensitivity. However liquid ionization chamber should be considered for both initial recombination and general recombination. We, therefore, studied using the Co-60 beam as the continuous beam and the microLion chamber (PTW) for comparing the ion collection efficiency by Greening theory, two-dose rate method and our experiment method. The measurements were carried out using Theratron 780 as the cobalt machine and water phantom and 0.6 cc Farmer type ionization chamber was used with microLion chamber in same condition for measuring the charge of microLion chamber according to the dose rates. Dose rate was in 0.125~0.746 Gy/min and voltages applied to the microLion chamber were +400, +600 and +800 V. As the result, the collection efficiency by three method was generally less than 1%. In particular, our experimental collection efficiency was in good agreement within 0.3% with Greening theory except the lowest two dose rates. The collection efficiency by two-dose rate method also agreed with Greening theory generally less than 1%, but the difference was about 4% when the difference of two dose rates were lower. The ion recombination correction factors by Greening theory, two-dose rate method and our experiment were 1.0233, 1.0239 and 1.0316, respectively, in SSD 80 cm, depth 5 cm recommended by TRS-398 protocol. Therefore we confirmed that the loss by ion recombination was about 3% in this condition. We think that our experiment method for ion recombination correction will be useful tool for radiation dosimetry in continuous beam.

Feasibility Study of the microDiamond Detector for Measurement of Small Field Photon Beam (광자선 소조사면 선량측정을 위한 microDiamond 검출기의 유용성 고찰)

  • Lee, Chang Yeol;Kim, Woo Chul;Kim, Hun Jeong;Ji, Young Hoon;Kim, Kum Bae;Lee, Sang Hoon;Min, Chul Kee;Jo, Gwang Hwan;Shin, Dong Oh;Kim, Seong Hoon;Huh, Hyun Do
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.255-263
    • /
    • 2014
  • The dosimetry of very small fields is challenging for several reasons including a lack of lateral electronic equilibrium, large dose gradients, and the size of detector in respect to the field size. The objective of this work was to evaluate the suitability of a new commercial synthetic diamond detector, namely, the PTW 60019 microDiamond, for the small field dosimetry in cyberknife photon beams of 6 different collimator size (from 5 mm to 30 mm). Measurements included dose linearity, dose rate dependence, output factors (OF), percentage depth doses (PDD) and off center ratio (OCR). The results were compared to those of pinpoint ionization chamber, diamond detector, microLion liquid Ionization chamber and diode detector. The dose linearity results for the microDiamond detector showed good linearly proportional to dose. The microDiamond detector showed little dose rate dependency throughout the range of 100~600 MU/min, while microLion liquid Ionization chamber showed a significant discrepancy of approximately 5.8%. The OF measured with microDiamond detector agreed within 3.8% with those measured with diode. PDD curves measured with silicon diode and diamond detector agreed well for all the field sizes. In particular, slightly sharper penumbras are obtained by the microDiamond detector, indicating a good spatial resolution. The results obtained confirm that the new PTW 60019 microDiamond detector is suitable candidate for application in small radiation fields dosimetry.