• 제목/요약/키워드: micro-tribology

검색결과 194건 처리시간 0.02초

Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제1보 - 딤플깊이의 영향 (Lubrication Characteristics of Laser Textured Parallel Thrust Bearing: Part 1 - Effect of Dimple Depth)

  • 박태조;황윤건
    • Tribology and Lubricants
    • /
    • 제25권5호
    • /
    • pp.305-310
    • /
    • 2009
  • Laser surface texturing (LST) methods are applied recently to generate micro-dimples in machine components having parallel sliding surfaces such as thrust bearings, mechanical face seals and piston rings, etc. And it is experimentally reported by several researchers that the micro-dimpled bearing surfaces can reduce friction force. Until now, however, theoretical results for various dimple parameters are not fully presented. In this paper, a commercial computational fluid dynamics (CFD) code, FLUENT is used to investigate the effect of dimple depth on the lubrication characteristics of parallel thrust bearing. The results show that the pressure, velocity and density distributions within dimples are highly affected by dimple depths and cavitation conditions. Adoption of micro-dimple on the bearing surface can reduce the friction force highly and its levels are affected by dimple depth. The numerical methods and results can be use in design of optimum dimple characteristics to improve thrust bearing performance.

SLA을 이용한 소수성 표면 제작 (Fabrication of Hydrophobic Surfaces with Stereolithography)

  • 홍성호
    • Tribology and Lubricants
    • /
    • 제37권1호
    • /
    • pp.1-6
    • /
    • 2021
  • This paper presents the experimental results of hydrophobic surfaces developed using a stereolithography-based additive-manufacturing technique. The additive manufacturing technique can be used to manufacture objects with complex geometries from computer-aided design data. Several additive manufacturing methods, such as selective laser sintering, fused deposition modeling, stereolithography apparatus (SLA), and inkjet-based system, have been developed. The SLA is a form of three-dimensional printing technology used to create prototypes, patterns, and production parts in successive layers through photochemical processes. Light causes chemical monomers and oligomers to cross-link together to form objects composed of polymers. Moreover, this method is economical for fabricating surfaces with high output resolution and quality. Here, we fabricate various surfaces using different shapes using an SLA. The surfaces with micro-patterns are fabricated for 10 cases, including the biomimetic surface. The fabricated surfaces with various micro-patterns are evaluated for hydrophobicity performance based on the static contact angle. The contact angle is measured three times for each case, and the averaged value is used. The results indicate that the arrangements in a staggered structure have a larger contact angle than those in a line when the same micro-pattern is applied. Moreover, the mimetic surfaces exhibit more hydrophobic characteristics than those of artificial micro-patterns.

마찰조건에 따른 핀부싱 베어링의 접촉면압분포에 관한 연구 (Contact Pressure Distribution of Pin Bushing Bearings Depending on the Friction Conditions)

  • 김청균;김도현
    • Tribology and Lubricants
    • /
    • 제23권6호
    • /
    • pp.255-260
    • /
    • 2007
  • This paper presents the contact pressure distribution of pin bushing bearings for various lubrication friction modes such as oil film and elastohydrodynamic lubrication contacts, a mixed lubrication contact, a boundary contact, and a dry contact. During a sliding contact of a plain bearing, the boundary and dry rubbing contacts are dominated between a piston pin and a pin bushing bearing. This may come from a micro-scale clearance, an explosive impact pressures from the piston head, and an oscillatory motion of a pin bearing. The computed results show that as the oil film parameter $h/{\sigma}$ is increased from the dry rubbing contact to the oil film lubrication friction, the maximum oil film pressure is radically increased due to an increased viscous friction with a thin oil film thickness and the maximum asperity contact pressure is reduced due to a decreased asperity contact of the rubbing surfaces.

SAM 코팅층의 미소마찰거동에 관한 연구 (Frictional Behavior of SAM Coated Silicon)

  • 차금환;김대은
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제31회 춘계학술대회
    • /
    • pp.19-23
    • /
    • 2000
  • Stiction is an undesirable phenomenon that can be encountered often in Micro-Electro Mechanical Systems (MEMS) applications, In order to minimize this effect, Self-Assembled Monolayers (SAM) are commonly used. In this work the frictional characteristics of SAM are investigated using both micro-tribotester and SPM. It was found that the performance of SAM is quite sensitive to coating condition. The experimental results show promise for SAM to be used in sliding applications of micro systems.

  • PDF

서브 마이크로 구조를 가진 실리콘 표면의 마찰 특성 연구 (Study on Frictional Characteristics of Sub-micro Structured Silicon Surfaces)

  • 한지희;한규범;장동영;안효석
    • Tribology and Lubricants
    • /
    • 제33권3호
    • /
    • pp.92-97
    • /
    • 2017
  • The understanding of the friction characteristics of micro-textured surface is of great importance to enhance the tribological properties of nano- and micro-devices. We fabricate rectangular patterns with submicron-scale structures on a Si wafer surface with various pitches and heights by using a focused ion beam (FIB). In addition, we fabricate tilted rectangular patterns to identify the influence of the tilt angle ($45^{\circ}$ and $135^{\circ}$) on friction behaviour. We perform the friction test using lateral force microscopy (LFM) employing a colloidal probe. We fabricate the colloidal probe by attaching a $10{\pm}1-{\mu}m$-diameter borosilicate glass sphere to a tipless silicon cantilever by using a ultraviolet cure adhesive. The applied normal loads range between 200 nN and 1100 nN and the sliding speed was set to $12{\mu}m/s$. The test results show that the friction behavior varied depending on the pitch, height, and tilt angle of the microstructure. The friction forces were relatively lower for narrower and deeper pitches. The comparison of friction force between the sub-micro-structured surfaces and the original Si surface indicate an improvement of the friction property at a low load range. The current study provides a better understanding of the influence of pitch, height, and tilt angle of the microstructure on their tribological properties, enabling the design of sub-micro- and micro-structured Si surfaces to improve their mechanical durability.

코팅된 실리콘웨이퍼의 Microtribological 특성 (Micro-tribological Properties of Coated Silicon Wafer)

  • 차금환;김대은
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제27회 춘계학술대회
    • /
    • pp.91-96
    • /
    • 1998
  • In recent years, the tribological behavior of coated ceramic material has been the topic of much interest. Particularly, the understanding of the tribological performance of thin film under light load is important for potential applications in MEMS. In this work under light load and low speed, the tribological behavior of coated silicon was investigated. The results show that both adhesive and abrasive wear occur depending on the sliding condition. Also the effect of humidity on friction was influenced by the apparent ares of contact between the two surfaces. Finally, undulations on the silicon wafer were found to be effective in trapping wear particles.

  • PDF

Non-Destructive Detection of Hertzian Contact Damage in Ceramics

  • Ahn, H.S.;Jahanmir, S.
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.114-121
    • /
    • 1995
  • An ultrasonic technique using normal-incident compressional waves was used to evaluate the surface and subsurface damage in ceramics produced by Hertzian indentation. Damage was produced by a blunt indenter (tungsten carbide ball) in glass-ceramic, green glass and silicon nitride. The damage was classified into two types; (1) Hertzian cone crack, in green glass and fine grain silicon nitride, and (2) distributed subsurface micro fractures, without surface damage, produced in glass ceramic. The ultrasonic technique was successful in detecting cone craks. The measurement results with the Hertzian cone cracks indicated that cracks perpendicular to the surface could be detected by the normal-incident compressional waws. Also shown is the capability of normal-incident compressional waves in detection distributed micro-sized cracks size of subsurface microfractures.

그리스 윤활 하에서 표면요철의 영향 (Effects of Surface Texturing under Grease Lubrication)

  • 김성기;송근철;김상범;채영훈
    • Tribology and Lubricants
    • /
    • 제24권5호
    • /
    • pp.234-240
    • /
    • 2008
  • It is well known that surface texturing improves the tribological properties of mechanical components for enhancing hydro-dynamic effect or serving as a micro reservoir. There are not, however, enough researches to reveal the effects of surface texturing on the tribological properties under grease lubrication which is used in lubricating many mechanical elements. In the present study, therefore, the effects of surface texturing on the tribological properties are investigated under grease lubrication based on an experimental approach. The results show that surface texturing decreases friction coefficient. It is found that the friction coefficient can be decreased by controlling the diameter and density of micro-dimple. The diameter of dimple is more effective under high load and low speed than otherwise. And, the density of dimple is effective under low load and high speed.

DLC 박막 및 리소그래피 공정을 적용한 트라이볼러지 특성 연구 (Research on Tribology Characteristics Using DLC Thin Film and Lithography Processes)

  • 장태환;박진혁;김태규
    • 열처리공학회지
    • /
    • 제36권6호
    • /
    • pp.412-421
    • /
    • 2023
  • As the demand for mechatronic systems and high performance increases in the machinery industry, the importance of improving friction characteristics is emphasized. During relative movement of objects, friction and wear occur on two surfaces in contact, and various methods are being designed to increase the lifespan and energy efficiency of machines. The energy increase effect using lubricants is a well-known method. In this study, a micro-sized rectangular grid pattern was produced by applying a precise micro-pattern photo lithography process. Rectangular grid patterns of the same shape and friction behavior according to the size of the pattern were produced in convex and concave shapes, and the tribological characteristics of each were analyzed.