• Title/Summary/Keyword: micro-strip patch

Search Result 18, Processing Time 0.024 seconds

Frequency Agile Properties of Microstrip Antenna Using Quartz (Quartz를 이용한 마이크로스트립 안테나의 주파수 특성에 관한 연구)

  • Ha, Yong-Man;Oh, Seung-Jae;Woo, Hyoung-Gwan;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.488-491
    • /
    • 2001
  • This paper investigated that resonant frequencies of micro strip patch antenna were agile when piezoelectric materials were used as the antenna substrates. The resonant frequencies of the micro strip antenna using the piezoelectric substrate. The micro strip patch antenna made of Quartz substrate was designed and fabricated by Ensemble v 7.0 simulator. The experimental problem was compensated by Ensemble v 7.0

  • PDF

A Circular Micro-Strip Patch Antenna Using a PBG (광 밴드 갭(Photonic Band Gap) 구조를 응용한 원형 마이크로스트립 패치 안테나)

  • Lee Bong-Geol;Jung Chun-Suk;Woo Jong-Woon;Ahn Sang-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.11 s.102
    • /
    • pp.1067-1074
    • /
    • 2005
  • Studied antenna's basic structure was circular micro-strip patch antenna. Bandwidth was broaden and back-radiation pattern was decreased because studied antenna had PBG on a ground for improvement in its defect which is skin-effects. And character of antenna according to different shape of PBG was observed. Finally, air-gap whose dielectric constant is lower than substrates was added between substrates sc respond frequency was higher despite small size antenna.

Study on Circularly Polarized Micro-strip GPS Antenna (원형편파 마이크로 스트립 GPS 안테나의 연구)

  • Park, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3880-3884
    • /
    • 2010
  • In this paper, circularly polarized micro-strip GPS antenna has been designed and fabricated. In order to improve of frequency properties, patch size, corner truncated size and feed positions were simulated using HFSS simulation program. Micro-strip GPS antenna was fabricated on the FR4 substrate of dielectric constant 4.4. The fabricated GPS antenna has that center frequency is 1.575GHz and insertion loss is -34.50dB.

Four-armed Dual-band Rectangular Patch Antenna Design

  • Maharjan, Ram Krishna;Shrestha, Bhanu;Ch, Zorigt;Kim, Nam-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.342-342
    • /
    • 2010
  • This paper mainly focuses and describes four-armed dual-band rectangular type patch antenna using teflon of 0.54 mm thickness substrate for the application in personal wireless communications at about 2 GHz and 2.5 GHz frequency ranges. The dual-band patch antenna is obtained by embedding one centered and two pairs of rectangular patches on single body above the substrate. Details of the proposed antenna design are presented and discussed as a novel design with remarkable value of return loss (S11) of -28.68 dB and it is the most suitable for WiMAX applications as well.

  • PDF

Characteristics of Circularly Polarized Antenna (원형편파 안테나 특성 연구)

  • Park, Yong-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.6
    • /
    • pp.563-567
    • /
    • 2010
  • In this paper, circularly polarized micro-strip GPS of 1.57 GHz and DMB of 2.63~2.65GHz antenna have been studied. In order to improve of frequency properties, parameters such as patch size, corner truncated type, and feed positions were simulated using HFSS program. GPS and DMB antenna were fabricated and characteristics were measured using network analyzer.

H-Plane Coupling Between Rectangular Microstrip antennas (구형 마이크로스트립 안테나의 H-Plane 상호결합)

  • Ko, Ji-Whan;Cho, Young-Ki;Son, Hyon
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.6
    • /
    • pp.46-52
    • /
    • 1985
  • A theoretical study of mutual coupling effects between two H-plane coupled microstrip patch antennas is presented. The radiation resistance and slot capacitance of a single micro-strip patch are calculated. To investigate the mutual coupling effects, the even and odd mode characteristic impedance and effective dielectric constants are obtained using the coupled microstrip line model. The S-parameter matrix elements 511,512 are used to study the mutual coupling e(facts in S-band frequency ranges for various patch spacings. Theoretical results and measurements are in good agreement.

  • PDF

Development and Field Test of the NEXTSat-2 Synthetic Aperture Radar (SAR) Antenna Onboard Vehicle (차세대소형위성 2호 영상 레이다 안테나 개발 및 차량 탑재 시험)

  • Shin, Goo-Hwan;Lee, Jung-Su;Jang, Tae Seong;Kim, Dong-Guk;Jung, Young-Bae
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.33-40
    • /
    • 2021
  • Based on the requirements of a total weight of 42 kg or less, the NEXTSat-2 SAR (synthetic aperture radar) system was developed. As the NEXTSat-2 is a small-sized satellite, the SAR system was designed to account for about 40% of the dry mass of the payload relative to the total mass. Among the major components of the SAR system - which are an antenna, an RF transceiver, a baseband signal processor, and a power unit - a part with a particularly large dry mass is the antenna, the core of the SAR system. Whereas various selections are possible in consideration of gain and efficiency when designing the antenna, the micro-strip patch array antenna was adopted by reflecting the dry mass, power, and resolution required by the NEXTSat-2 project. In order to meet the mission requirement of the NEXTSat-2, the antenna was developed with a frequency of 9.65 GHz, a gain of 42.7 dBi, and a return loss of -15 dB. The performance of the antenna was verified by conducting a field test onboard the vehicle.

Study of Microwave Propagation Model for ETC System Using Micro Strip Patch Antenna (마이크로 스트립 패치 안테나를 이용한 ETC 시스템을 위한 마이크로파 전파모델 연구)

  • Bae, C.H.;Chung, H.C.
    • Electronics and Telecommunications Trends
    • /
    • v.15 no.1 s.61
    • /
    • pp.38-40
    • /
    • 2000
  • 자동 요금 징수 시스템인 ETC(Electronic Toll Collection) 시스템에서 차량의 탑재장치와 비컨(Beacon) 간에 마이크로파가 전파되는 경로를 모델화하였으며 다중 경로에 따른 페이딩 효과를 분석하였다. 또한 환경 변화 즉 강우 시 마이크로파 전파도 고려하여 수치분석을 하였다. 분석결과 강우에 의한 반사면의 반사계수가 변하여 페이딩 효과가 크게 증가하였다. 이런 수치해석 결과를 탑재장치에서 수신된 전압의 크기와 비컨과 차량 사이의 거리로 도시하였다.

Microstrip Patch Antenna with a Metal Cavity Using Conducting Vias (다수의 도체 비어로 형성된 캐비티가 있는 마이크로스트립 패치 안테나)

  • Byun, Woo-Jin;Kim, Bong-Soo;Eun, Ki-Chan;Kim, Kwang-Sun;Song, Myung-Sun
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.371-374
    • /
    • 2005
  • This paper presents the design and fabrication of a cost effective and broad band 8$\times$8 stacked patch array antenna which are backed by a metal cavity operating at 400Hz based on 4 layers LTCC technology. Gain of antenna can be enhanced by using a metal cavity, which can be easily implemented by using LTCC substrates and vias. The broadband performance can be obtained by varying the dimension of patch and the number of layers. Furthermore, to keep the feeding network as smal1 as possible and reduce radiation from feeding network a mirrored patch orientation and embedded micro strip line are adopted, The fabricated antenna is $40\times45\times0.4$ $mm^3$in size. It shows gain 20.4dBi, beam width 10.7deg and impedance bandwidth of l0dE return loss 3.35GHz (40.9$\sim$44.25 GHz), which is about 8% of a center frequency.

  • PDF

Design and implementation of electromagnetic band-gap embedded antenna for vehicle-to-everything communications in vehicular systems

  • Kim, Hongchan;Yeon, KyuBong;Kim, Wonjong;Park, Chul Soon
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.731-738
    • /
    • 2019
  • We proposed a novel electromagnetic band-gap (EBG) cell-embedded antenna structure for reducing the interference that radiates at the antenna edge in wireless access in vehicular environment (WAVE) communication systems for vehicle-to-everything communications. To suppress the radiation of surface waves from the ground plane and vehicle, EBG cells were inserted between micropatch arrays. A simulation was also performed to determine the optimum EBG cell structure located above the ground plane in a conformal linear microstrip patch array antenna. The characteristics such as return loss, peak gain, and radiation patterns obtained using the fabricated EBG cell-embedded antenna were superior to those obtained without the EBG cells. A return loss of 35.14 dB, peak gain of 10.15 dBi at 80°, and improvement of 2.037 dB max at the field of view in the radiation beam patterns were obtained using the proposed WAVE antenna.