• 제목/요약/키워드: micro-particles

검색결과 735건 처리시간 0.026초

노즐 막힘이 미세 오리피스형 다단 임팩터의 입자 채취 성능에 미치는 영향 (Effect of Particle Clogging in Orifices on the Particle Collection Efficiency of a Micro-Orifice Impactor)

  • 지준호;배귀남;황정호
    • 대한기계학회논문집B
    • /
    • 제27권2호
    • /
    • pp.197-205
    • /
    • 2003
  • A cascade impactor is a multistage impaction device used to separate airborne particles into aerodynamic size classes. A micro-orifice impactor uses micro-orifice nozzles to extend the cut sizes of the lower stages to as small as 0.05 ${\mu}{\textrm}{m}$ in diameter without resorting to low pressures or creating excessive pressure drops across the impactor stages. In this work, the phenomenon of particle clogging in micro-orifice nozzles was experimentally investigated for a commercial micro-orifice uniform deposit impactor (MOUDI). It was observed, using an optical microscope, that the micro-orifice nozzles of the final stages were partially clogged due to particle deposition during the aerosol sampling. Therefore the pressure drops across the nozzles were higher than the nominal values given by the manufacturer. To examine the effect of particle clogging in micro-orifice nozzles, the particle collection efficiency of the MOUDI was evaluated using an electrical method for fine particles with diameters in the range of 0.1-0.6 ${\mu}{\textrm}{m}$. The monodisperse liquid dioctyl sebacate (DOS) particles were used as test aerosols. A faraday cage was employed to measure the low-level current of the charged particles upstream and downstream of each stage. It was found that the collection efficiency curves shifted to correspond to smaller orifice sizes, and the 50-% cutoff sizes were much smaller than those given by the manufacturer for the three stages with nozzles less than 400 ${\mu}{\textrm}{m}$ in diameter.

방전 가공을 이용한 미세 구멍 가공 시 발생하는 테이퍼 형상의 제어 (Control of Taper Shape in Micro-Hole Machining by Micro-EDM)

  • 김동준;이상민;이영수;주종남
    • 한국정밀공학회지
    • /
    • 제22권4호
    • /
    • pp.52-59
    • /
    • 2005
  • When a micro hole is machined by EDM with a cylindrical electrode, the hole diameter is different at the inlet and the outlet of the micro hole. The taper shape of the micro hole is caused by not only wear of the electrode but the eroded particles. The eroded particles cause secondary discharge during machining the micro hole. As a result, the diameter of the inlet becomes larger than that of the outlet. In this paper, a new method is proposed to reduce the difference in diameter between the inlet and the outlet of the hole. Observed was that the feed depth and machining time affect the formation of taper shape On this experimental basis, ultrasonic vibration was applied to reduce machining time, and capacitance was changed during machining to use the difference in discharging energy of different capacitances. Using the proposed method, a straight micro-hole was fabricated.

수평전기장에 의해 대전된 입자의 운동제어 (Control of Motion of Charged Micro-Particle by In-plane Field)

  • 백인수;정병선;임영진;이승희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.514-517
    • /
    • 2004
  • We have studied motion of micro-particle immersed in liquid crystal (LC) controlled by in-plane field, which is an important technology in the electro-phoretic display (EPD). In the EPD on and off states are decided by movement of these charged particles and response time is influenced by moving velocity of charged particles. In addition, the velocity can be controlled by intensity of applied voltage such that the higher the applied voltage, the faster velocity of particles become. In this study, we investigated particles's motion as functions of applied voltage, temperature of LC, rubbing direction,

  • PDF

The Development of Mono-sized Micro Silicon Particles for Spherical Solar Cells by Pulsated Orifice Ejection Method

  • Dong, Wei;Masuda, Satoshi;Takagi, Kenta;Kawasaki, Akira
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.426-427
    • /
    • 2006
  • Mono-sized silicon particles were effectively fabricated by a novel way named pulsated orifice ejection method (POEM). The particles are with very narrow particles size distribution and very small standard deviation of mean particle size. There are two different types spherical silicon particles were found. One consists of many grains mainly in random boundaries. The other consists of two or three grains with only twin orientation relationships, even single crystal in cross-section was also found within this type of spherical silicon particles.

  • PDF

자기연마법을 응용한 미세금형부품의 초정밀 연마 (Ultra Precision Polishing of Micro Die and Mold Parts using Magnetic-assisted Machining)

  • 안병운;김욱배;박성준;이상조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1832-1835
    • /
    • 2003
  • This paper suggests the selective ultra precision polishing techniques for micro die and mold parts using magnetic-assisted machining. Fabrication of magnetic abrasive particle and their polishing performance are key technology at ultra precision polishing process of micro parts. Conventional magnetic abrasives have disadvantages. which are missing of abrasive particle and inequality between magnetic particle and abrasive particle. So, bonded magnetic abrasive particles are fabricated by several method. For example, plasma melting and direct bonding. Ferrite and carbonyl iron powder are used as magnetic particle where silicon carbide and Al$_2$O$_3$ are abrasive particle. Developed particles are analyzed using measurement device such as SEM. Possibility of magnetic abrasive and polishing performance of this magnetic abrasive particles also have been investigated. After polishing, surface roughness of workpiece is reduced from 2.927 $\mu\textrm{m}$ Rmax to 0.453 $\mu\textrm{m}$ Rmax.

  • PDF

미세 입자 조작 기구의 제작 및 실험 (Fabrication and Experiment of Micro Particle Manipulator)

  • 박재형;김용권
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권3호
    • /
    • pp.136-143
    • /
    • 2001
  • A micro particle manipulator, which is devised for trapping particles at fixed positions by negative dielectrophoretic force (DEP force), has been fabricated and experimented. It is composed of square type electrode arrays fabricated by nickel electroplating with the height of 28 ${\mu}m$. To improve the quality of electroplated nickel electrodes, plating conditions have been optimized. Micro particles used in this study are polystyrene spheres and their to the specific position and trapped. The DEP force along the moving path of the particles has been estimated by the motion equation of a single particle. The displacement of a particle with an elapsed time was measured using a high-speed camera (1000 frames/sec). The velocity and acceleration of the particle were calculated from the measured data. The DEP force acting on the particle was estimated.

  • PDF

The Study of Transmission Spectrum of Twisted Nematic Liquid Crystal Doped with Phosphorus Micro Particles Apply for Vehicle Lamp

  • Minh-Tran, Anh
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권1호
    • /
    • pp.145-149
    • /
    • 2023
  • In this study, the spectrum changes induced from the doping of phosphor micro particles in a twist nematic liquid crystal cell was observed. The experimental results show that the achromatic transmission can be observed with a proper driving condition, which may be applied to the design of an achromatic liquid crystal device. In this paper, we tried to figure out the spectrum changes induced from the doping of phosphor micro particles. The experimental result of the phosphor powder doped twist nematic liquid crystal cell shows that the achromatic transmission and the wavelength linearly dependent transmission both can be observed with some proper driving conditions, respectively. The result is useful on developing an achromatic liquid crystal device and it can be applied for Vihicle lamp.

Microstructure and Hardness of TiC Particle-reinforced Fe Self-fluxing Alloy Powders Based Hybrid Composite Prepared by High Energy Ball Milling

  • Park, Sung-Jin;Song, Yo-Seung;Nam, Ki-Seok;Chang, Si-Young
    • 한국분말재료학회지
    • /
    • 제19권2호
    • /
    • pp.122-126
    • /
    • 2012
  • The Fe-based self-fluxing alloy powders and TiC particles were ball-milled and subsequently compacted and sintered at various temperatures, resulting in the TiC particle-reinforced Fe self-fluxing alloy hybrid composite, and the microstructure and micro-hardness were investigated. The initial Fe-based self-fluxing alloy powders and TiC particles showed the spherical shape with a mean size of approximately 80 ${\mu}m$ and the irregular shape of less than 5 ${\mu}m$, respectively. After ball-milling at 800 rpm for 5 h, the powder mixture of Fe-based self-fluxing alloy powders and TiC particles formed into the agglomerated powders with the size of approximately 10 ${\mu}m$ that was composed of the nanosized TiC particles and nano-sized alloy particles. The TiC particle-reinforced Fe-based self-fluxing alloy hybrid composite sintered at 1173 K revealed a much denser microstructure and higher micro-hardness than that sintered at 1073 K and 1273 K.

Micro-PIXE as a Technique for Multi-elemental Detection and Localization in Various Atmospheric Environmental Samples

  • Ma, Chang-Jin;Choi, Sung-Boo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제24권E1호
    • /
    • pp.54-62
    • /
    • 2008
  • Microbeam PIXE, often called micro-PIXE, is one of powerful tools for analyzing a wide range of elements for various samples. Moreover, it has important applications of interest to the atmospheric science. In the present study, a qualitative elemental imagination for various atmospheric environmental species was attempted using micro-PIXE. Especially, in combination with a novel individual droplet collection method and the micro-PIXE analytical technique, the chemical specification of various individual atmospheric samples could be carried out. Here, we briefly introduce the results of an application of micro-PIXE to the study of atmospheric environment. The detailed spatial resolution of multiple elements for various samples like individual ambient particles, individual raindrops, individual fog droplets, and individual snow crystals could be successfully achieved by scanning 2.6 MeV $H^+$ micro beam ($1{\sim}2{\mu}m$) accelerated by 3 MeV single-end accelerator.

Micro pH Sensor Using Patterned Hydrogel with pH Indicators

  • Jang, Ji-Sung;Kwon, Sung-Hoon
    • 센서학회지
    • /
    • 제20권4호
    • /
    • pp.234-237
    • /
    • 2011
  • This paper presents a study into pH Indicator-Embedded hydrogel micro-particles which are encoded various shapes according to the captured indicator. We incorporate various pH indicators into a photo-curable hydrogel, PEG-DA(Poly(ethylene glycol) diacrylate). Using the latest fluidic lithography techniques, we can easily fabricate variously patterned hydrogel particles based on in-situ photopolymerization of the PEG-DA in a micro-fluidic channel. The shape of the particle is related to the pH indicator inside the particle. We demonstrate that the micro pH sensors change their colors according to the pH levels. The micro pH sensors have various characteristics that are related to the curing time, particle size, etc. By changing these conditions, we can adjust the long term stability and reaction time of the hybrid micro pH sensors.