• Title/Summary/Keyword: micro-particles

Search Result 739, Processing Time 0.025 seconds

Development of Ultraprecision Finishing Technique using Bonded Magnetic Abrasives (결합된 자성연마입자를 이용한 초정밀 피니싱 기술 개발)

  • 윤종학;박성준;안병운
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.59-66
    • /
    • 2003
  • This study suggests the new ultraprecision finishing techniques for micro die and mold parts using magnetic field-assisted polishing. Conventional magnetic abrasives have several disadvantages, which are missing of abrasive particle and inequal mixture between magnetic particle and abrasive particle. Therefore, bonded magnetic abrasive particles are fabricated by several method. For example, plasma melting and direct bonding. Carbonyl iron powder is used as magnetic particle there silicon carbide and alumina are abrasive particles. Developed magnetic abrasives are analyzed using SEM. Feasibility of magnetic abrasive and polishing performance of this magnetic abrasive particles also have been investigated. After polishing, surface roughness of workpiece is reduced from 85.4 ㎚ Ra to 9 ㎚ RA.

A Study on PTV analysis of AC Electroosmotic Flows in the Microchannel with Coplanar electrodes (마이크로 채널 내 교류 전기 삼투 유동에 대한 PTV해석)

  • Heo, Hyeung-Seok;Kang, Sang-Mo;Suh, Yong-Kweon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.113-116
    • /
    • 2006
  • AC-electroosmosis is one of the electrokinetic forces leading to phenomena peculiar in the microfluidics. This paper shows particle deformation in the microchannel with rectangular electrodes on the bottom wall for the AC-electroosmotic flows. We make a PDMS microchannnel with ITO electrodes To measure velocity distributions of the particles we used a three-dimensional particle tracking velocimetry (micro-PTV) technique this method is Particle tracking by interpolation the diffraction pattern ring diameter variations with the defocusing distances of base particle locations. we induce a function of frequency at the electrode. We find the velocity of particles is the most at the edge of the electrodes and Particles move to side wall or center of the channel for the bottom and middle.

  • PDF

Isotopic Analysis of NUSIMEP-6 Uranium Particles using SEM-TIMS

  • Park, Jong-Ho;Park, Sujin;Song, Kyuseok
    • Mass Spectrometry Letters
    • /
    • v.4 no.3
    • /
    • pp.51-54
    • /
    • 2013
  • Isotopic analysis using thermal ionization mass spectrometry coupled with scanning electron microscopy (SEM-TIMS) was performed to determine the isotopic ratios of uranium contained in micro-particles in the 6th Nuclear Signatures Interlaboratory Measurement Evaluation Programme (NUSIMEP-6) sample. Elemental analysis by energy dispersive X-ray spectroscopy (EDS) was conducted on uranium-bearing mirco-particles, which were transferred to rhenium filaments for TIMS loading using a micromanipulation system in a SEM. A multi-ion-counter system was utilized to detect the ion signals of the four isotopes of uranium simultaneously. The isotope ratios of uranium corrected by bracketing using a reference material showed excellent agreement with the certified values. The measurement accuracy for $n(^{234}U)/n(^{238}U)$ and (b) $n(^{235}U)/n(^{238}U)$ was 10% and 1%, respectively, which met the requirements for qalification for the NetWork of Analytical Laboratories (NWAL).

The Effects of Interfacial Properties of the Styrene/Water on the Styrene Latex Particle Properties using Triton X-100/SDS Surfactant Mixture (폴리스티렌 라텍스 제조에 있어서 Triton X-100/SDS 계면활성제 혼합이 단량체/수용액 간의 계면물성 및 라텍스의 특성에 미치는 영향)

  • Park, A-Reum-Yi;Kim, Young-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.240-248
    • /
    • 2010
  • The blending effects of surfactants on the polystyrene emulsion polymerization were studied. The blending of Triton X-100 and SDS affects to the interfacial properties of the styrene monomer and water phases, and finally, the properties of the polystyrene latex particles. As the blending ratio of SDS/Triton X-100 increases, the interfacial tension and CMC of the blended surfactants were decreased and results in a reducing the size of the latex particles. It was found that the interfacial tension was reduced when the surfactant were blended. By increasing the SDS content, the interfacial tension was reduced, and, at a certain condition, the interfacial tension was reached to an extremely low value to form micro-emulsion and the nano-sized latex particles (80~110 nm).

Influence of Slip Angle on Abrasion Behavior of NR/BR Vulcanizates

  • Eunji Chae;Sung-Seen Choi
    • Elastomers and Composites
    • /
    • v.58 no.1
    • /
    • pp.17-25
    • /
    • 2023
  • Abrasion tests of model tire tread compounds (NR and NR/BR blend compounds) were performed at different slip angles (1° and 7°) using a laboratory abrasion tester. The abrasion behavior was investigated by analyzing the worn surface and wear particles. The abrasion spacing formed on the specimen worn at the large slip angle of 7° was significantly narrower than that at the small slip angle of 1°, while the abrasion depth for the specimen worn at 7° was lower than that at 1°. The abrasion spacing and depth tended to be narrower and lower, respectively, as the BR content increased. The abrasion patterns were clearly visible on the outside of the specimen for the slip angle of 1° but not for 7°. The wear particles had a rough surface and there were numerous micro-bumps. It was found that the crosslink density affected the abrasion patterns and morphologies of the wear particles.

Cutting Efficiency and Mechanical Characteristics of Diamond Micro-blades Containing WS2 Lubricant (WS2 윤활제를 첨가한 마이크로 다이아몬드 블레이드의 절삭성능과 기계적 특성)

  • Kim, Song-Hee;Jang, Jae-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.1
    • /
    • pp.37-42
    • /
    • 2012
  • $WS_2$ powder was added to the Cu/Sn bond metal of diamond micro-blades for machining of semi-conductor and IC chips to improve cutting efficiency. The effect of $WS_2$ additive on cutting efficiency was investigated and compared with the micro-blades with $MoS_2$ developed in previous research. Flexural strength, frictional coefficient, and wear resistance of blades decreased with $WS_2$ but wear depth increased. It was found that the blades including $WS_2$ consumed less momentary energy than the blades containing $MoS_2$ during dicing test. Micro-blades containing $WS_2$ exhibited lower flexural strength than the blades with $MoS_2$ resulting from higher amount of sintering defects relevant to the less effectiveness of $WS_2$ on fluidity. The effect of $WS_2$ and $MoS_2$ on fluidity during sintering was analyzed in terms of mismatching degree between the longitudinal direction of lubricant particles and the perpendicular direction to the compact loading. The blade with 8.1 vol.% of $WS_2$ showed the best cutting efficiency.

A Study on Performance Improvement of Electrical Discharge Machining for Producing Micro-holes Using a Shot Blasting Surface Treatment (쇼트 블라스팅 표면처리를 통한 미세홀 방전가공 성능향상에 관한 연구)

  • Jang, H.S.;Kim, H.S.;Shin, K.H.
    • Transactions of Materials Processing
    • /
    • v.21 no.5
    • /
    • pp.312-318
    • /
    • 2012
  • With an increasing trend toward miniaturization, electrical discharge machining(EDM) has been receiving a lot of attention as a suitable production technology for micro-parts, since it enables the machining of hard conductive materials with a high degree of repeatability and without alteration to the material. When a micro-hole is fabricated by EDM, however, the diameter of the inlet hole is larger than that of the outlet region due to the additional discharge effect caused by the eroded particles. In this paper, a shot blasting surface treatment, in which an abrasive material is accelerated through a pressurized nozzle and directed at the surface of a part, is suggested as an effective method to reduce the tapered shape of EDM micro-hole. In addition, the influence of process parameters such as spark-on time and electrode diameter on the machining performance was investigated. It is shown quantitatively that the difference in diameter between the inlet and outlet holes decreases with the shot blasting treatment and with decreasing spark-on time.

Zeta Potential Measurement of Micro Bubbles Generated by Electrolysis (전기분해(電氣分解)시 알루미늄 극판(極板)에서 발생(發生)한 미세기포(微細氣泡)의 제타전위(電位) 측정(測定))

  • Kim, Won-Tae;Han, Moo-Young;Lee, Sung-Woo;Han, Yi-Seon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.4
    • /
    • pp.343-349
    • /
    • 2000
  • Techniques such as dissolved air flotation and electroflotation, which utilize micro bubbles, are increasingly used for water and wastewater treatment. Most studies have concentrated on particle characteristics. Pretreatments that manipulate particle size and zeta potential were considered important. A recent study, which modeled the collision mechanism between micro bubbles and particles in dissolved air flotation, suggested bubble characteristics should also be important. Hydrogen micro bubbles were generated electrolytically and their zeta potentials measured under various conditions using a novel electrophoresis method. Effects of several parameters were investigated. Bubble zeta potentials were found to be pH dependent, and to have a negative value around neutral pH, becoming zero or positive at lower pH. The pH at zero zeta potential was 5.0 under study conditions. Using artificial solution and tap water, at fixed pH, bubble zeta potentials varied with solution composition. Zeta potentia]s of bubbles were affected by the types of cations and anions in solution but not by the voltage applied. These findings will help improve efficiencies of particle removal processes that utilize micro bubbles. As bubble zeta potential varies with solution composition, it needs to be measured for each composition to understand those effects, which increase removal efficiency.

  • PDF