• Title/Summary/Keyword: micro-degree

Search Result 409, Processing Time 0.029 seconds

Infection Properties of Oak Wilt Disease in Bukhansan National Park Adjacent to Metropolitan Areas in Korea

  • Choi, Jin-Woo;Yeum, Jung-Hun
    • Journal of Environmental Science International
    • /
    • v.26 no.7
    • /
    • pp.803-815
    • /
    • 2017
  • In this study of the oak wilt disease that has occurred in a large scale in a protected area located near South Korea's metropolitan region, a detailed analysis has been conducted on the terrain, species and Diameters at Breast Height (DBH) of infected trees to identify the distribution of infection properties in the affected area. Taking into consideration the distribution of oak tree vegetation, a total of 4,640 quadrats in a size of 10 m by 10 m, have been set; and oak tree species, the DBH and infection damage per quadrat have been investigated. Geological properties have been analyzed according to elevation, slope, aspect and micro topography while a weighted value has been given according to the degree of infection in order to calculate an infection index. Through correlation analysis, the infection ratio of seriously-damaged and withered trees and the infection index have been analyzed with regards to the geological properties, tree species and DBH. The analysis shows that the disease tends to affect an area with medium elevation rather than those in the highest or lowest areas and that serious damage has been observed at rugged spots with a steep gradient (more than $30^{\circ}$). Although there has been no distinct tendency with regards to aspect, the infection ratio is relatively high in areas facing the north while the seriously-damaged and withered ratio are high in areas facing the south. In terms of micro topography, more damage has been spotted in valley terrain. Quercus mongolica has sustained more damage than other species. When it comes to the DBH, as seen in previous studies, large trees have suffered severe damage, but the analysis has also revealed conspicuous damage to medium trees with a DBH of 15-20 cm, which had not previously been considered at high risk.

Research on MEMS for Motion Measurement of Solar Energy Platform at Sea (해상 태양광 부유체의 거동측정을 위한 MEMS 연구)

  • Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.328-330
    • /
    • 2018
  • A floating body with a device that converts solar energy into electrical energy is moved by waves. To evaluate the safety of a floating body, measurement and interpretation of the float motion is required, which is generally based on 6 degrees of freedom motion. The 6 degree of freedom motion can be measured using MEMS (Micro-Electro Mechanical System), which features low power, small size and low cost. The key issue is, meanwhile, the low precision of the MEMS. In this study, the safety evaluation technique by analyzing the behavior of floating body using MEMS was examined. As a result of the study, it was found that the marine floating body can be modeled through the inertial measurement platform using the 3-axis accelerometer and the 3-axis gyroscope, and the safety of the float can be evaluated through this model.

  • PDF

Preparation and Characterization of high-quality activated carbon by KOH activation of pitch precursors (KOH 활성화에 의한 피치계 고품질 활성탄의 제조 및 특성)

  • Lee, Eun-Ji;Kwon, Soon-Hyung;Choi, Poo-Reum;U, Jong-Pyo;Jung, Ji-Chul;Kim, Myung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.408-415
    • /
    • 2014
  • In order to prepare high-quality activated carbons (ACs), coal tar pitch (CTP), and mixtures of CTP and petroleum pitch (PP) were activated with KOH. The ACs prepared by activation of CTP in the range of $700{\sim}1000^{\circ}C$ for 1~5 h had very porous textures with large specific surface areas of $2470{\sim}3081m^2/g$. The optimal activation conditions of CTP were determined as CTP/KOH ratio of 1:4, activation temperature of $900^{\circ}C$, and activation time of 3 h. The obtained AC showed the highest micro-pore volume, and pretty high specific surface area and meso-pore volume. The micro-pore volumes and specific areas of activated mixtures of CTP and PP were similar to each other but the meso-pore volume could be increased. In order to change the degree of crystallinity of precursors before KOH activation process, the CTPs were carbonized in the range of $500{\sim}900^{\circ}C$. As the carbonization temperature increased, the specific surface area and pore volume of the activated ACs with the same activation conditions for CTP decreased dramatically. It was demonstrated that the increased pore size distribution of AC electrodes in the range of 1 to 2 nm plays an important role in the performance of electric double-layer capacitor.

Nano-thick Nickel Silicide and Polycrystalline Silicon on Polyimide Substrate with Extremely Low Temperature Catalytic CVD (폴리이미드 기판에 극저온 Catalytic-CVD로 제조된 니켈실리사이드와 실리콘 나노박막)

  • Song, Ohsung;Choi, Yongyoon;Han, Jungjo;Kim, Gunil
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.321-328
    • /
    • 2011
  • The 30 nm-thick Ni layers was deposited on a flexible polyimide substrate with an e-beam evaporation. Subsequently, we deposited a Si layer using a catalytic CVD (Cat-CVD) in a hydride amorphous silicon (${\alpha}$-Si:H) process of $T_{s}=180^{\circ}C$ with varying thicknesses of 55, 75, 145, and 220 nm. The sheet resistance, phase, degree of the crystallization, microstructure, composition, and surface roughness were measured by a four-point probe, HRXRD, micro-Raman spectroscopy, FE-SEM, TEM, AES, and SPM. We confirmed that our newly proposed Cat-CVD process simultaneously formed both NiSi and crystallized Si without additional annealing. The NiSi showed low sheet resistance of < $13{\Omega}$□, while carbon (C) diffused from the substrate led the resistance fluctuation with silicon deposition thickness. HRXRD and micro-Raman analysis also supported the existence of NiSi and crystallized (>66%) Si layers. TEM analysis showed uniform NiSi and silicon layers, and the thickness of the NiSi increased as Si deposition time increased. Based on the AES depth profiling, we confirmed that the carbon from the polyimide substrate diffused into the NiSi and Si layers during the Cat-CVD, which caused a pile-up of C at the interface. This carbon diffusion might lessen NiSi formation and increase the resistance of the NiSi.

Identification of Hub Genes in the Pathogenesis of Ischemic Stroke Based on Bioinformatics Analysis

  • Yang, Xitong;Yan, Shanquan;Wang, Pengyu;Wang, Guangming
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.5
    • /
    • pp.697-709
    • /
    • 2022
  • Objective : The present study aimed to identify the function of ischemic stroke (IS) patients' peripheral blood and its role in IS, explore the pathogenesis, and provide direction for clinical research progress by comprehensive bioinformatics analysis. Methods : Two datasets, including GSE58294 and GSE22255, were downloaded from Gene Expression Omnibus database. GEO2R was utilized to obtain differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs were performed using the database annotation, visualization and integrated discovery database. The protein-protein interaction (PPI) network of DEGs was constructed by search tool of searching interactive gene and visualized by Cytoscape software, and then the Hub gene was identified by degree analysis. The microRNA (miRNA) and miRNA target genes closely related to the onset of stroke were obtained through the miRNA gene regulatory network. Results : In total, 36 DEGs, containing 27 up-regulated and nine down-regulated DEGs, were identified. GO functional analysis showed that these DEGs were involved in regulation of apoptotic process, cytoplasm, protein binding and other biological processes. KEGG enrichment analysis showed that these DEGs mediated signaling pathways, including human T-cell lymphotropic virus (HTLV)-I infection and microRNAs in cancer. The results of PPI network and cytohubba showed that there was a relationship between DEGs, and five hub genes related to stroke were obtained : SOCS3, KRAS, PTGS2, EGR1, and DUSP1. Combined with the visualization of DEG-miRNAs, hsa-mir-16-5p, hsa-mir-181a-5p and hsa-mir-124-3p were predicted to be the key miRNAs in stroke, and three miRNAs were related to hub gene. Conclusion : Thirty-six DEGs, five Hub genes, and three miRNA were obtained from bioinformatics analysis of IS microarray data, which might provide potential targets for diagnosis and treatment of IS.

Effects of Developed Grape Bag on the Physiological Disorders, Pathogenic Decay and Fruit Quality in 'Campbell Early' Grapevines (개발된 포도 봉지 괘대가 '캠벨얼리' 과실의 생리장해와 병 발생 및 품질에 미치는 영향)

  • Lee, Y.C.;Moon, B.W.;Kim, M.S.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.6 no.1
    • /
    • pp.81-89
    • /
    • 2004
  • The effects of developed grape bags on the micro-climate changes of bag, physiological disorder, pathogenic decay, quality and harvest time evaluation in 'Campbell Early' grapevines were studied. The temperature and light transmittance of developed grape bags showed no differences compared with the onces of conventional bag and non-bagging, but relative humidity and the amount of water evaporation were changed in all treatments. The occurrence of unfertilized fruit, poorly colored fruit, russet and gray mold rot showed no significant difference in all treatment at harvest time. Developed grape bags decreased effectively the occurrence of cracking fruit and bitter rot in 'Campbell Early' fruit. There was no difference in growth of cluster and berry, soluble solids and total acidity in fruits, degree of skin color and bloom appearance at harvest time. The skin color and fruit boom and harvest time evaluation in developed grape bags were resulted excellent compared with the once of conventional bag and non bagging.

Effect of domestic sewage on macro-micro physical and mechanical properties of soil

  • Zhi-Fei Li;Wei Liu;Yu-Ao Li;Yi Li;Shu-Chang Zhang;Yin-Lei Sun
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.3
    • /
    • pp.247-262
    • /
    • 2024
  • Domestic sewage can greatly affect the macro-micro physical-mechanical properties of building foundation soils. In order to investigate the effect of domestic sewage on physical and mechanical properties of soils, the physicochemical properties of three groups of different concentrations of domestic sewage contaminated soil were tested through indoor experiments. Combined with scanning electron microscopy, X-ray diffraction experiments, and grey relational analysis, the degree of influence of different concentrations of domestic sewage on the physicochemical properties of soil was compared and analyzed from multiple perspectives such as microstructure and mineral composition, revealing the influencing mechanism of soil pollution by domestic sewage. The results showed that under the immersion of contaminated water, the color of the soaking water turned black first and then yellow, and brownish yellow secretions appeared on the surface of the soil samples. The moisture content, specific gravity, density, and pore ratio index of the soil samples immersed in 50% and 100% domestic sewage decreased with the increase of sewage concentration, while the liquid limit of the soil samples changed in the opposite direction. The immersion time had little effect on the slope of the compression curve of the soil samples soaked in tap water. For the soil samples immersed in domestic sewage, the slope of the compression curve and the compression coefficient increased with the increase of domestic sewage concentration and immersion time, while the compression modulus showed the opposite trend. In the soil samples immersed in tap water, there were a large number of small particles and cementitious substances, and the structure was relatively dense. With the increase of domestic sewage concentration, the microstructure of the soil changed significantly, with the appearance of sigle particle structure, loose and disorderly arrangement of particles, increased and enlarged pores, gradual reduction of small particle substances and cementitious substances, and the soil structure transformed from compact to loose. The research findings can provide theoretical reference for contaminated geotechnical engineering.

Evaluation on Weathering Characterization on Rock Types Using Artificial Weathering Test (인공풍화시험을 이용한 암종별 풍화특성 평가)

  • Heo, Yeul;Kang, Changwoo;Kwon, Youngcheul;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.8
    • /
    • pp.23-32
    • /
    • 2017
  • For exposed slopes, the weathering degree over time has a major effect on the engineering properties of rocks and the slope stability. Rocks are gradually changed by weathering into soil over time, and the resulting physical, chemical and mechanical changes of rocks affect the engineering stability of the slope. However, there are not many ways to objectively evaluate the weathering degree of a slope. In this study, therefore, to investigate the weathering characteristics of rocks, granite, gneiss and shale distributed in the Chungbuk region were sampled by weathering stage and changes in their component minerals and tissues were investigated. Furthermore, artificial weathering was induced using the freezing and thawing test and quantitatively investigated through porosity and absorption rate. In addition, the changes of microcracks due to artificial weathering were evaluated through box fractal dimension ($D_B$). Through mineralogical study the phase change of constituting minerals, the growth of secondary minerals, the development of micro-cracks and the fabric changes due to weathering were observed. The mineralogical, chemical and engineering evaluations of the weathering degree through the experimental results in this study are expected to be useful for analyzing the weathering characteristics and causes by rock type and for proposing a methodology to evaluate the degradation of physical properties comparatively and quantitatively.

Regional Differences of Leaf Spot Disease on Grapevine cv. 'Campbell Early' Caused by Pseudocercospora vitis in Plastic Green House (포도 캠벨얼리의 무가온 하우스재배시 지역별 갈색무늬병 발생차이)

  • Jung, Sung-Min;Park, Jong-Han;Park, Seo-Jun;Lee, Han-Chan;Lee, Jae-Wook;Ryu, Myung-Sang
    • Research in Plant Disease
    • /
    • v.15 no.3
    • /
    • pp.193-197
    • /
    • 2009
  • Pseudocercospora leaf spot was major disease of grape cultivar 'Campbell Early' in Korea. Leaf spot first appeared in early June and rapidly dispersed to other leaves through rainy season. Disease progress of leaf spot by Pseudocercospora vitis in plastic green house, in the two provinces (Gimje and Gimcheon), were investigated in 2007. Differences of Infected leaves (%) between cultivation systems were observed in field and plastic green house, but there was no difference between provinces. Micro environmental factors, such as temperature and relative humidity, were correlated with infected leaves by PROC REG procedure of SAS (Statistical Analysis System). As a result, regression model best described ($R^2=0.95^{**}$) the infected leaves as a function of the interaction of cumulated temperatures; Y (Infected leaves)=-7.0101+0.0496$\times$20Hcum (Cumulated hour above 20 degree)+0.0208$\times$20cum (Cumulated temperature above 20 degree)-0.2781$\times$25Hcum (Cumulated hour above 25 degree). A statistics model was shown that cumulated hour and temperature above specific degree were critical factor for Pseudocercospora leaf spot on the grapevine leaves in plastic green house.

A Study on Variation of Rock Strength due to Weathering and It도s Estimation (암석의 풍화에 따른 강도변화 특성 및 강도추정에 관한 연구)

  • 정형식;유병욱
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.71-94
    • /
    • 1997
  • It is important to evaluate rock strength in order to check stability of a rock slope or to design a structure built on rock. However, test methods used for the evaluation have some difficulties since rock samples provide various deviation of strength due to micro cracks in the samples and teat errors, Also, reliable data have not been accumulated for the rock strength in Korea. Therefore, simple teat methods that can be used easily for investication of rock strength in field or in laboratory are not provided sufficiently yet. This study is to investigate variation of the rock strength due to the degree of weathering and to evaluate the degree of weathering by types of rocks, by using data that have been obtained for several years. Therefore, it is possible to provide a relationship between several rock strength values by performing tests such as uniaxial compression teat, point load test, schmidt hammer teat, absorption ratio best and slaking durability tests. The equations of relationships that can be used to estimate rock strength by using simple test methods in field and in laboratory are proposed.

  • PDF