• Title/Summary/Keyword: micro-conductive pattern

Search Result 25, Processing Time 0.03 seconds

Microfabrication of Micro-Conductive patterns on Insulating Substrate by Electroless Nickel Plating (무전해 니켈 도금을 이용한 절연기판상의 미세전도성 패턴 제조)

  • Lee, Bong-Gu;Moon, Jun Hee
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.90-100
    • /
    • 2010
  • Micro-conductive patterns were microfabricated on an insulating substrate ($SiO_2$) surface by a selective electroless nickel plating process in order to investigate the formation of seed layers. To fabricate micro-conductive patterns, a thin layer of metal (Cu.Cr) was deposited in the desired micropattern using laser-induced forward transfer (LIFT). and above this layer, a second layer was plated by selective electroless plating. The LIFT process. which was carried out in multi-scan mode, was used to fabricate micro-conductive patterns via electroless nickel plating. This method helps to improve the deposition process for forming seed patterns on the insulating substrate surface and the electrical conductivity of the resulting patterns. This study analyzes the effect of seed pattern formation by LIFT and key parameters in electroless nickel plating during micro-conductive pattern fabrication. The effects of the process variables on the cross-sectional shape and surface quality of the deposited patterns are examined using field emission scanning electron microscopy (FE-SEM) and an optical microscope.

Electric Circuit Fabrication Technology using Conductive Ink and Direct Printing

  • Jeong, Jae-U;Kim, Yong-Sik;Yun, Gwan-Su
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.12.1-12.1
    • /
    • 2009
  • For the micro conductive line, memory device fabrication process use many expensive processes such as manufactur-ing of photo mask, coating of photo resist, exposure, development, and etching. However, direct printing technology has the merits about simple and cost effective processes because nano-metal particles contained inks are directly injective without mask. And also, this technology has the advantage about fabrication of fine pattern line on various substrates such as FPCB, PCB, glass, polymer and so on. In this work, we have fabricated the fine and thick metal pattern line on flexible PCB substrate for the next generation electronic circuit using Ag nano-particles contained ink. To improve the line tolerance on flexible PCB, metal lines are fabricated by sequential prinitng method. Sequential printing method has vari-ous merits about fine, thick and high resolution pattern lines without bulge.

  • PDF

Implementation of High Performance Micro Electrode Pattern Using High Viscosity Conductive Ink Patterning Technique (고점도 전도성 잉크 패터닝 기술을 이용한 고성능 미세전극 패턴 구현)

  • Ko, Jeong Beom;Kim, Hyung Chan;Dang, Hyun Woo;Yang, Young Jin;Choi, Kyung Hyun;Doh, Yang Hoi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.83-90
    • /
    • 2014
  • EHD (electro-hydro-dynamics) patterning was performed under atmospheric pressure at room temperature in a single step. The drop diameter smaller than nozzle diameter and applied high viscosity conductive ink in EHD patterning method provide a clear advantage over the piezo and thermal inkjet printing techniques. The micro electrode pattern was printed by continuous EHD patterning method using 3-type control parameters (input voltage, patterning speed, nozzle pressure). High viscosity (1000cps) conductive ink with 75wt% of silver nanoparticles was used. EHD cone type nozzle having an internal diameter of $50{\mu}m$ was used for experimentation. EHD jetting mode by input voltage and applied 1st order linear regression in stable jet mode was analyzed. The stable jet was achieved at the amplitude of 1.4~1.8 kV. $10{\mu}m$ micro electrode pattern was created at optimized parameters (input voltage 1.6kV, patterning speed 25mm/sec and nozzle pressure -2.3kPa).

Cu Line Fabricated with Inkjet Printing Technology for Printed Circuit Board (잉크젯 인쇄 기술을 이용한 인쇄회로기판용 나노구리배선 개발)

  • Seo, Shang-Hoon;Lee, Ro-Woon;Yun, Kwan-Soo;Joung, Jae-Woo;Lee, Hee-Jo;Yook, Jong-Gwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1806-1809
    • /
    • 2008
  • Study that form micro pattern by direct ink jet printing method is getting attention recently. Direct ink jet printing spout fine droplet including nano metal particle by force or air pressure. There is reason which ink jet printing method is profitable especially in a various micro-patterning technology. It can embody patterns directly without complex process such as mask manufacture or screen-printing for existent lithography. In this study, research of a technology that ejects fine droplet form of Pico liter and forms metal micro pattern was carried with inkjet head of piezoelectricity drive system. Droplet established pattern while ejecting consecutively and move on the surface at the fixed speed. Patterns formed in ink are mixed with organic solvent and polymer that act as binder. So added thermal hardening process after evaporate organic solvent at isothermal after printing. I executed high frequency special quality estimation of CPW transmission line to confirm electrical property of manufactured circuit board. We tried a large area printing to confirm application possibility of an ink jet technology.

  • PDF

Fabrication of Micro Conductor Pattern on Polymer Material by Laser Induced Surface Activation Technology

  • Lee, Sung-Hyung;Yashiro, Hitoshi;Kure-Chu, Song-Zhu
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.327-332
    • /
    • 2020
  • Laser induced surface activation (LISA) technology requires refined selection of process variables to fabricate conductive microcircuits on a general polymer material. Among the process variables, laser mode is one of the crucial factors to make a reliable conductor pattern. Here we compare the continuous wave (CW) laser mode with the pulse wave (PW) laser mode through determination of the surface roughness and circuit accuracy. In the CW laser mode, the surface roughness is pronounced during the implementation of the conductive circuit, which results in uneven plating. In the PW laser mode, the surface is relatively smooth and uniform, and the formed conductive circuit layer has few defects with excellent adhesion to the polymer material. As a result of a change of laser mode from CW to PW, the value of Ra of the polymer material decreases from 0.6 ㎛ to 0.2 ㎛; the value of Ra after the plating process decreases from 0.8 ㎛ to 0.4 ㎛, and a tight bonding force between the polymer source material and the conductive copper plating layer is achieved. In conclusion, this study shows that the PW laser process yields an excellent conductive circuit on a polymeric material.

Implementation of Biosensor Pattern Using Micro Patterning Technique (미세전극 패터닝 기술을 이용한 바이오센서 패턴 구현)

  • Ko, Jeong Beom;Kim, Hyung Chan;Yang, Young Jin;Kim, Hyun Bum;Yang, Seong Wook;Oh, Seung Ho;Doh, Yang Hoi;Choi, Kyung Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.122-128
    • /
    • 2016
  • The Biosensor biosensor pattern was developed by via an EHD (electro-hydro-dynamics (EHD) patterning process that was performed under atmospheric pressure at room temperature in a single step. The drop diameter was smaller than nozzle diameter and applied high viscosity conductive ink was applied in the EHD patterning method to provide a clear advantage over the piezo and thermal inkjet printing techniques. The Biosensor's biosensor's micro electrode pattern was printed by via a continuous EHD patterning method using 3three- type types of control parameters parameter (input voltage, patterning speed, nozzle pressure). High viscosity (1000 cps) conductive ink with 75 wt% of silver nanoparticles was used for experimentation. The incremental result of impedance of biosensor impedance was measured between the antibody ($10ug{\mu}g/ml$) to spore (0.1 ng/ml, 10 ng/ml, and $1ug{\mu}g./ml$) reaction at frequency 493 MHz frequency.

Fabrication of Micro Pattern on Flexible Substrate by Nano Ink using Superhydrophobic Effect (초발수 현상을 이용한 나노 잉크 미세배선 제조)

  • Son, Soo-Jung;Cho, Young-Sang;Rha, Jong Joo;Cho, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.20 no.2
    • /
    • pp.120-124
    • /
    • 2013
  • This study is carried out to develop the new process for the fabrication of ultra-fine electrodes on the flexible substrates using superhydrophobic effect. A facile method was developed to form the ultra-fine trenches on the flexible substrates treated by plasma etching and to print the fine metal electrodes using conductive nano-ink. Various plasma etching conditions were investigated for the hydrophobic surface treatment of flexible polyimide (PI) films. The micro-trench on the hydrophobic PI film fabricated under optimized conditions was obtained by mechanical scratching, which gave the hydrophilic property only to the trench area. Finally, the patterning by selective deposition of ink materials was performed using the conductive silver nano-ink. The interface between the conductive nanoparticles and the flexible substrates were characterized by scanning electron microscope. The increase of the sintering temperature and metal concentration of ink caused the reduction of electrical resistance. The sintering temperature lower than $200^{\circ}C$ resulted in good interfacial bonding between Ag electrode and PI film substrate.

A Study of Substrate Surface Treatment and Metal Pattern Formation using Inkjet Printing Technology (잉크젯 프린팅 기술을 이용한 기판 표면처리와 금속 패턴 형성에 관한 연구)

  • Jo, Yong-Min;Park, Sung-Jun
    • Journal of ILASS-Korea
    • /
    • v.17 no.1
    • /
    • pp.20-26
    • /
    • 2012
  • Inkjet printing is one of the direct writing technologies and is able to form a pattern onto substrate by dispensing droplets in desired position. Also, by inkjet technology manufacturing time and production costs can be reduced, and procedures can be more efficient. To form a metal pattern, it must be harmonized with conductive nano ink, printing process, sintering, and surface treatment. In this study, micro patterning of conductive line has been investigated using the piezoelectric printhead driven by a bipolar voltage signal is used to dispense $20-40{\mu}m$ diameter droplets and silver nano ink which consists of 50 nm silver particles. In addition, hydrophobic treatment of surface, overlap printing techniques, and sintering conditions with changing temperature and times to achieve higher conductivity.

Commercialization & Process Optimization of Protective Film on Nano Silver Transparent Conductive Substrate by Means of Large Scale Roll-to-Roll Coating and Experimental Design (나노실버 투명전도소재 보호필름의 개발 및 공정 최적화와 실험 계획법을 이용한 검증)

  • Park, Kwang-Min;Lee, Ji-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.813-820
    • /
    • 2015
  • We have studied commercialization and process optimization of protective film on transparent conductive coated substrate, nano silver on flexible PET (poly ethylene terephthalate), by means of roll-to-roll micro-gravure coater. Nanosilver on flexible PET substrate is potential materials to replace ITO (indium tin oxide). Protective film is most important to maintain unique silver pattern on top of transparent PET. PSA pressure sensitive adhesives) was developed solely for nano silver on PET and protective film was successfully laminated. We have optimized all process conditions such as coating thickness, line speed and aging time & temperature via experimental design. Transparent conductive film and its protective film developed in this research are commercially available at this moment.