• Title/Summary/Keyword: micro-bead

Search Result 61, Processing Time 0.024 seconds

Monitoring microRNAs Using a Molecular Beacon in CD133+/CD338+ Human Lung Adenocarcinoma-initiating A549 Cells

  • Yao, Quan;Sun, Jian-Guo;Ma, Hu;Zhang, An-Mei;Lin, Sheng;Zhu, Cong-Hui;Zhang, Tao;Chen, Zheng-Tang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.161-166
    • /
    • 2014
  • Lung cancer is the most common causes of cancer-related deaths worldwide, and a lack of effective methods for early diagnosis has greatly impacted the prognosis and survival rates of the affected patients. Tumor-initiating cells (TICs) are considered to be largely responsible for tumor genesis, resistance to tumor therapy, metastasis, and recurrence. In addition to representing a good potential treatment target, TICs can provide clues for the early diagnosis of cancer. MicroRNA (miRNA) alterations are known to be involved in the initiation and progression of human cancer, and the detection of related miRNAs in TICs is an important strategy for lung cancer early diagnosis. As Hsa-miR-155 (miR-155) can be used as a diagnostic marker for non-small cell lung cancer (NSCLC), a smart molecular beacon of miR-155 was designed to image the expression of miR-155 in NSCLC cases. TICs expressing CD133 and CD338 were obtained from A549 cells by applying an immune magnetic bead isolation system, and miR-155 was detected using laser-scanning confocal microscopy. We found that intracellular miR-155 could be successfully detected using smart miR-155 molecular beacons. Expression was higher in TICs than in A549 cells, indicating that miR-155 may play an important role in regulating bio-behavior of TICs. As a non-invasive approach, molecular beacons could be implemented with molecular imaging to diagnose lung cancer at early stages.

Quantification of 3D Pore Structure in Glass Bead Using Micro X-ray CT (Micro X-ray CT를 이용한 글라스 비드의 3차원 간극 구조 정량화)

  • Jung, Yeon-Jong;Yun, Tae-Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.83-92
    • /
    • 2011
  • The random and heterogeneous pore structure is a significant factor that dominates physical and mechanical behaviors of soils such as fluid flow and geomechanical responses driven by loading. The characterization method using non-destructive testing such as micro X-ray CT technique which has a high resolution with micrometer unit allows to observe internal structure of soils. However, the application has been limited to qualitatively observe 2D and 3D CT images and to obtain the void ratio at macro-scale although the CT images contain enormous information of materials of interests. In this study, we constructed the 3D particle and pore structures based on sequentially taken 2D images of glass beads and quantitatively defined complex pore structure with void cell and void channel. This approach was enabled by implementing image processing techniques that include coordinate transformation, binarization, Delaunay Triangulation, and Euclidean Distance Transform. It was confirmed that the suggested algorithm allows to quantitatively evaluate the distribution of void cells and their connectivity of heterogeneous pore structures for glass beads.

The Effect of Process Variables on Mechanical Properties and Formability in GTA Welds of Commercial Pure Titanium Sheet (순 Ti 박판 GTA 용접부의 기계적 성질 및 성형성에 미치는 공정변수의 영향)

  • Kim, Jee-Hoon;Hong, Jae-Keun;Yeom, Jong-Taek;Park, Nho-Kwang;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.28 no.4
    • /
    • pp.73-80
    • /
    • 2010
  • In this work, the effect of welding variables on weldability of gas tungsten arc(GTA) welding was investigated with experimental analysis for a commercial pure(CP) titanium (Grade.1). The GTA welding tests on sheet samples with 0.5mm in thick were carried out at different process variables such as arc length, welding speed and electrode shape. In order to search an optimum arc length with full penetration, bead- on-plate welding before butt-welding were performed with different arc length conditions. From the bead- on-plate welding results, the optimum condition considering arc stability and electrode loss was obtained in the arc length of 0.8mm. Butt-welding tests based on the arc length of 0.8mm were carried out to achieve the optimum conditions of welding speed and electrode shape. Optimum conditions of welding speed and electrode shape were suggested as 10 mm/s and truncated electrode shape, respectively. It was successfully validated by the microstructural observation, tensile tests, micro-hardness tests and formability tests.

Experimental Research on the Effect of the Number of Layers by Overlay Welding of Monel-Clad Pipe on Weldability (모넬(Monel)-Clad 파이프의 오버레이 용접 적층수가 용접성에 미치는 영향에 관한 실험적 연구)

  • Choi, Hyeok;Park, Joon-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.42-50
    • /
    • 2016
  • Overlay welding affects the chemical components and weld hardness by dilution of the lamination layer thickness, which determines the surface properties. This study experimentally investigates different numbers of layers for overlay welding monel materials, which are anti-corrosion materials. The Fe content, weldability of the base metal and monel materials, hardness, and surface flatness were examined. Each evaluation was carried out after overlay welding with three layers on the base material and pipe base material of the plate. The Fe content was evaluated by analyzing the constituents of each layer. The Fe content was satisfactory in the three layers. The weldability of the laminate specimens was evaluated by a bending test. The hardness and bead flatness of the laminate specimens were evaluated by micro Vickers and 3D measurements. The hardness was highest in the heat-affected zone with one layer, and it decreased with increasing lamination. In the case of bead flatness, there is a sharp difference in the deviation with increasing numbers of laminations, which should be considered carefully.

Weldability and Weld Strength of Underwater Welds of Domestic Structural Steel Plates (國산構造용 鋼板 의 水中熔接性 과 熔接强度 特性)

  • 오세규;남기우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.3
    • /
    • pp.263-269
    • /
    • 1983
  • Underwater welding by a gravity arc welding process was investigated by using six types of coated electrodes and SM41A steel plates of 10 mm thickness as base metal and it was ascertained that this process may be put to practical use. Main results obtained are summarized as follows: 1. Angle of electrode affects no influence on bead appearance and the proper range of welding current and diameter of electrode for the high titanium oxide type is relatively wider than that for the ilmenite type. And the lime titania type, high titanium oxide type and ilmenite type of domestic coated arc welding electrodes of .phi.4 mm could attain the soundest underwater welded joints which contain no welding imperfection. 2. According to macro-structure, micro-structure and hardness distribution inspectionson underwater welded joint, the area between the HAZ and the surface of the weld in neighbourhood of the bond has the maximum hardness value. The structure of these parts is martensite and bainite. Other parts contain mocro-ferrite, micro-pearlite structure, which contain soundness of welded joint free from weld imperfection. 3. On consideration of both tensile strength of more than 100% joint efficiency and sufficient impact value, the welding condition which can get optimal welding strength is heat input of 1,400-1,500 J/mm, current of 200-215 ampere (voltage of 32-33 volts) in the case of lime titania type electrode. 4. Underwater welding strength (tensile strength, impact strength) depends on heat input (or current) quantitatively and they have the relationship of parabolic function. Each experimental equation has a high reliability and its percent of mean error is 4.14%. 5. It is suggested that the optimal design of weld strength by welding condition (current, heat input) could be utilized for a quality control of underwater welding.

Study on the tensile restraint crack characteristics in underwater welds of marine steel plates (선용 강판 수중용접부의 인장 구속 균열 특성에 관한 연구)

  • 오세규;강문호;김민남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.45-52
    • /
    • 1987
  • Generally the factors affected largely by the cold cracking sensitivity of the weld are the quantity of the diffusible hydrogen, the brittleness and hardness of the bond area and the tensile restraint stress. These factors have relation each other, and if we can reduce one of these factors, it becomes instrumental to the root cracks prevention of weld. This study deals with the gravity type-underwater-welding of KR Grade A-3 marine steel plate using E4303 welding electrode in order to compare wet-underwater-welding with in-air- welding, resulting in obtaining the tensile restraint characteristics, the hardness distribution, the quantity of diffusible hydrogen and the macro- and micro-crack properties in both underwater and in-air welds. The main results obtained are as follows: 1) The quantity of diffusible hydrogen measured for 48 hours is about 18cc/100g-weld-metal for the in-air-weld of one pass and about 48cc/100g-weld-metal for the underwater-weld of one pass which is about 3 times penetration of diffusible hydrogen compairing with the case of the in-air-weld. However, it was experimentally confirmed that, by the multi-pass welding of 2 to 5 passes, the diffusible hydrogen in the underwater weld metal can be reduced as much as 27 to 49%. 2) The hardness of the weld metal indicates the highest value in the heat affected zones of underwater weld for more rapid cooling rate, resulting in the higher sensitivity of cold cracking. So, it is desirable to soften the higher hardness in the HAZ by tempering effect such as the multi-pass welding in the underwater welding. 3) At the bond vicinity of the underwater weld HAZ, micro cracks were found as resulted by both more rapid cooling rate and more diffusible hydrogen and also by the stress corrosion cracking under the tensile restraint stress in the underwater. But this could be prevented by the tempering effect of the following weld bead such as the multi-pass welding.

  • PDF

Frictional characteristics of electro Zn-Ni alloy coated steel sheets (Zn-Ni계 합금도금강판의 마찰특성에 관한 연구)

  • 김영석;박기철;조재억
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1807-1818
    • /
    • 1991
  • The frictional characteristic of Zn-Ni electrogalvanized steel sheet was investigated by experimental procedures. To clarify the effect of surface property on the frictional characteristic of Zn-Ni coated steel sheet, Micro-hardness test, SEM analysis and X-ray diffraction analysis were carried out. Coefficients of friction for various stamping lubricant and Ni content in coated layer were measured by a draw bead friction test. The results show that frictional characteristic is very sensitive to Ni content of coated layer and depends on stamping lubricant. For Ni content less than about 11%, selection of proper lubricant is necessary to obtain low coefficient of friction in Zn-Ni coated steel sheet such as in case of cold rolled steel sheet.

Novel measuring technique for biological adhesion forces using AFM (원자현미경을 이용한 생체물질의 접착력 측정기술 개발)

  • Kim S.J.;Moon W.K.;Jun J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.641-644
    • /
    • 2005
  • The study on the interaction forces of some biological materials is important to understanding biological phenomena and their application to practical purpose. This paper introduces a measuring technique for biological adhesive forces using the AFM(Atomic Force Microscope). Since no standardized thesis on adhesive forces exist, the adhesive forces is defined as adhesive forces against a hardened surface of biological materials. To grant the results are meaningful, which is based on the understanding the surface characteristics of biological materials using the AFM, a nominal value of average adhesive force per unit area should be measured. Therefore the modified AFM probe with small micro glass bead was proposed so that it can guarantee the required contact area for measuring the average adhesive forces. A pyrex glass substrate with circular patterns, which was fabricated by micromachining technique, is introduced in order to controll the contact area. The two types of mussel adhesive proteins, Celltak and recombinant-MGFP5, were tested by the proposed measuring method. The test results show that the adhesive force of the mussel adhesive proteins can be reliably measured by use of this method.

  • PDF

An Experimental Study on the Dynamic Characteristics of Frozen Soil (동결토의 동적 특성에 관한 연구)

  • 서상열
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.229-236
    • /
    • 2003
  • Ultrasonic propagation velocities of both the dilatational and shear waves through the weathered tuff soil sampled from the area tying between Ulanbator and Beijing were measured under temperature condition of near subzero by means of sing-around method. After comparing the results with obtained data on unfrozen water content, a linear relation between velocities and unfrozen water content was performed with high coefficient value. Experimental results of two kinds of rather uniform materials, namely, glass-beads and silica micro-beads, testified the similar linear relations. In addition, the change rate of dilatational wave velocities with the change of volumetric unfrozen water content was not dependent on soil type. Although a rational theory of the ultrasonic velocities dependence on the unfrozen water content is not yet proposed, the presented empirical relationships may suggest the appropriate evaluation to the effect of unfrozen water on dynamic characteristics of frozen soil.

The Residual Stresses Evaluation of Butt Welded Zone on the Joint Shape in the Titanium Plate (티타늄재 맞대기 용접부의 개선형상에 따른 잔류응력 평가)

  • 성백섭;김일수;김인주;차용훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.290-294
    • /
    • 1997
  • In this study, the welded residual stresses test was carried out with pure titanium and TIG welded material using in chemical plants an airplane frames etc.. The relationship between process parameters and residual stresses is complex since a number of factors are involved. Extensive studies have been carried out to determine the effects of various process parameters on residual stress. The result of micro-hardness about butt welded spacemen was measured of low hardness value in the melting metal zone. The residual stress of welded zone on the Titanium plate by the sectioning method and finite element method was high measured in the spacemen of high current and voltage. Also, compressive residual stress in the range of distance about 15∼20mm from the middle of the deposited metal area is very change. The result of impact test about butt welded spacemen of pure titanium plate was measured of very difference in the welded bead, heat affect zone and base metal, and be measured of high impact value in the heat affect zone. The measure result of welded residual stresses about pure titanium is high measured hen nominal steel plate. The V-Type butt welded spacemen, that of the measurement result on the welded residual stress is high measure then X-Type butt welded spacemen.

  • PDF