• Title/Summary/Keyword: micro system technology

Search Result 1,367, Processing Time 0.032 seconds

The Development of Automatic Inspection System of Differential Driver Gear through Research Convergence of Industrial and Academia (산학 융합 연구를 통한 차동 기어 자동 검사 시스템의 개발)

  • Lee, Jeong-Ick
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.257-263
    • /
    • 2018
  • The purpose of this study is to develop an automatic inspection system for a part of the differential drive gear into the transmission. This technology will make using the microvision automatic test equipment and automatic test equipment microlaser. This is that the operator intends to make the defect rate 0 in the inspection stage of the product which has been carelessly processed. The equipment developed in this research project will be applied to many areas. Packaging companies, nut bolt processing company, precisely supplier for printing on top of the semiconductor, SMT, etc. The company wants to sell the vision inspection equipment for various applications. If the defective rate of 0 is achieved through this research project, it is also possible to secure a stable supply from the parent company, and to lay the foundations for exporting based on product reliability. When the automatic inspection system is applied to domestic automobile parts processing companies, the reliability of automobiles in Korea will be greatly increased.

Preparation and Evaluation of Meloxicam-loaded Poly(D,L-lactic acid) Microspheres (멜록시캄 함유 poly (D,L-lactic acid) 미소립자의 제조 및 평가)

  • Im, Jong-Seob;Oh, Dong-Hoon;Li, Dong-Xun;Sung, Jung-Hoon;Yoo, Bong-Kyu;Kim, Jung-Ae;Woo, Jong-Soo;Lee, Yong-Bok;Kim, Se-Mi;Choi, Han-Gon;Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.1
    • /
    • pp.63-72
    • /
    • 2008
  • Meloxicam-loaded microspheres were prepared with poly(D,L-lactic acid)(PLA) by a solvent-emulsion evaporation method. The morphology, particle size, drug loading capacity, drug entrapment efficiency (EE) and release patterns of drug were investigated in vitro. Various batches of micro spheres with different size and drug content were obtained by changing the ratio of meloxicam to $PLA^{\circ}{\AE}s$ with different molecular weight, PLA concentration in the dispersed phase and stirring rate. Meloxicam crystals on microsphere surface, which were released rapidly and could act as a loading dose, were observed with increasing drug content. The release rate was increased with increase in drug contents and decrease in the molecular weight of PLA. Microspheres prepared with smaller molecular weight produced faster drug release rate. The release rate of meloxicam for long-acting injectable delivery system in vitro, which would aid in predicting in vivo release profile, could be controlled by properly optimizing various factors affecting characteristics of microspheres. Blood concentration-time profile of meloxicam after intramuscular injection of meloxicam-loaded microspheres in rabbits showed possibility of long term application of this system in clinical settings.

Cell Patterning on Various Substrates Using Polyelectrolyte Multilayer and Microstructure of Poly(Ethylene Glycol) (다양한 기판 위에서 고분자 전해질 다층 막과 폴리에틸렌글리콜 미세 구조물을 이용한 세포 패터닝 방법)

  • Shim, Hyun-Woo;Lee, Ji-Hye;Choi, Ho-Suk;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1100-1106
    • /
    • 2008
  • In this study, we presented rapid and simple fabrication method of functionalized surface on various substrates as a universal platform for the selective immobilization of cells. The functionalized surface was achieved by using deposition of polyelectrolyte such as poly(allyamine hydrochloride) (PAH), poly(diallyldimethyl ammonium chloride) (PDAC), poly(4-ammonium styrene sulfonic acid) (PSS), poly(acrylic acid) (PAA) and fabrication of poly(ethylene glycol) (PEG) microstructure through micro-molding in capillaries (MIMIC) technique on each glass, poly(methyl methacrylate) (PMMA), polystyrene (PS) and poly(dimethyl siloxane) (PDMS) substrate. The polyelectrolyte multilayer provides adhesion force via strong electrostatic attraction between cell and surface. On the other hand, PEG microstructures also lead to prevent non-specific binding of cells because of physical and biological barrier. The characteristic of each modified surface was examined by using static contact angle measurement. The modified surface onto several substrates provides appropriate environment for cellular adhesion, which is essential technology for cell patterning with high yield and viability in the micropatterning technology. The proposed method is reproducible, convenient and rapid. In addition, the fabrication process is environmentally friendly process due to the no use of harsh solvent. It can be applied to the fabrication of biological sensor, biomolecules patterning, microelectronics devices, screening system, and study of cell-surface interaction.

Novel Intensity-Based Fiber Optic Vibration Sensor Using Mass-Spring Structure (질량-스프링 구조를 이용한 새로운 광세기 기반 광섬유 진동센서)

  • Yi, Hao;Kim, Hyeon-Ho;Choi, Sang-Jin;Pan, Jae-Kyung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.78-86
    • /
    • 2014
  • In this paper, a novel intensity-based fiber optic vibration sensor using a mass-spring structure, which consists of four serpentine flexure springs and a rectangular aperture within a proof mass, is proposed and its feasibility test is given by the simulation and experiment. An optical collimator is used to broaden the beam which is modulated by the displacement of the rectangular aperture within the proof mass. The proposed fiber optic vibration sensor has been analyzed and designed in terms of the optical and mechanical parts. A mechanical structure has been designed using theoretical analysis, mathematical modeling, and 3D FEM (Finite Element Method) simulation. The relative aperture displacement according to the base vibration is given using FEM simulation, while the output beam power according to the relative displacement is measured by experiment. The simulated sensor sensitivity of $15.731{\mu}W/G$ and detection range of ${\pm}6.087G$ are given. By using reference signal, the output signal with 0.75% relative error shows a good stability. The proposed vibration sensor structure has the advantages of a simple structure, low cost, and multi-point sensing characteristic. It also has the potential to be made by MEMS (Micro-Electro-Mechanical System) technology.

Optimization of preform mold injection molding process for hemispheric plastic structure fabrication (반구형 플라스틱 구조체 성형을 위한 프리폼 몰드 사출성형공정 최적화)

  • Park, Jeong-Yeon;Ko, Young-Bae;Kim, Dong-Earn;Ha, Seok-Jae;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.30-36
    • /
    • 2019
  • Traditional cell culture(2-dimensional) is the method that provide a nutrient and environment on a flat surface to cultivate cells into a single layer. Since the cell characteristics of 2D culture method is different from the characteristics of the cells cultured in the body, attempts to cultivate the cells in an environment similar to the body environment are actively proceeding in the industry, academy, and research institutes. In this study, we will develop a technology to fabricate micro-structures capable of culturing cells on surfaces with various curvatures, surface shapes, and characteristics. In order to fabricate the hemispheric plastic structure(thickness $50{\mu}m$), plastic preform mold (hereinafter as "preform mold") corresponding to the hemisphere was first prepared by injection molding in order to fabricate a two - layer structure to be combined with a flat plastic film. Then, thermoplastic polymer dissolved in an organic solvent was solidified on a preform mold. As a preliminary study, we proposed injection molding conditions that can minimize X/Y/Z axis deflection value. The effects of the following conditions on the preform mold were analyzed through injection molding CAE, [(1) coolant inlet temperature, (2) injection time, (3) packing pressure, (4) volume-pressure (V/P). As a result, the injection molding process conditions (cooling water inlet temperature, injection time, holding pressure condition (V / P conversion point and holding pressure size)) which can minimize the deformation amount of the preform mold were derived through CAE without applying the experimental design method. Also, the derived injection molding process conditions were applied during actual injection molding and the degree of deformation of the formed preform mold was compared with the analysis results. It is expected that plastic film having various shapes in addition to hemispherical shape using the preform mold produced through this study will be useful for the molding preform molding technology and cast molding technology.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2008 (설비공학 분야의 최근 연구 동향: 2008년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il;Choi, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.715-732
    • /
    • 2009
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2008. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends in thermal and fluid engineering have been surveyed in the categories of general fluid flow, fluid machinery and piping, new and renewable energy, and fire. Well-developed CFD technologies were widely applied in developing facilities and their systems. New research topics include fire, fuel cell, and solar energy. Research was mainly focused on flow distribution and optimization in the fields of fluid machinery and piping. Topics related to the development of fans and compressors had been popular, but were no longer investigated widely. Research papers on micro heat exchangers using nanofluids and micro pumps were also not presented during this period. There were some studies on thermal reliability and performance in the fields of new and renewable energy. Numerical simulations of smoke ventilation and the spread of fire were the main topics in the field of fire. (2) Research works on heat transfer presented in 2008 have been reviewed in the categories of heat transfer characteristics, industrial heat exchangers, and ground heat exchangers. Research on heat transfer characteristics included thermal transport in cryogenic vessels, dish solar collectors, radiative thermal reflectors, variable conductance heat pipes, and flow condensation and evaporation of refrigerants. In the area of industrial heat exchangers, examined are research on micro-channel plate heat exchangers, liquid cooled cold plates, fin-tube heat exchangers, and frost behavior of heat exchanger fins. Measurements on ground thermal conductivity and on the thermal diffusion characteristics of ground heat exchangers were reported. (3) In the field of refrigeration, many studies were presented on simultaneous heating and cooling heat pump systems. Switching between various operation modes and optimizing the refrigerant charge were considered in this research. Studies of heat pump systems using unutilized energy sources such as sewage water and river water were reported. Evaporative cooling was studied both theoretically and experimentally as a potential alternative to the conventional methods. (4) Research papers on building facilities have been reviewed and divided into studies on heat and cold sources, air conditioning and air cleaning, ventilation, automatic control of heat sources with piping systems, and sound reduction in hydraulic turbine dynamo rooms. In particular, considered were efficient and effective uses of energy resulting in reduced environmental pollution and operating costs. (5) In the field of building environments, many studies focused on health and comfort. Ventilation. system performance was considered to be important in improving indoor air conditions. Due to high oil prices, various tests were planned to examine building energy consumption and to cut life cycle costs.

Studies on the Improvement of the Productivity of the Purse Seine Fishery - The characteristics on the motion of purse seine in the experimental operation of one boat system - (선망어업의 생산성 향상에 관한 연구 - 단선식 시험조업에 있어서 선망의 운동특성 -)

  • 김석종;최찬문;정용진
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.2
    • /
    • pp.99-111
    • /
    • 2003
  • The fundamental studies on the productivity improvement of the purse seine fishery are presented in this paper. The experiment on net shooting and hauling was carried out in the near sea of Jeju Island (33$^{\circ}$37.8' N, 126$^{\circ}$31.1' E) by using the Cheju national university training ship (A-Ra, 990tons) which was constructed for the one boat system operation of purse seine. The corkline and leadline of the purse seine used for the experiment were 829.1m and 995.7m in length, respectively. Micro data recorder system, net sonde, and tensiometer were used to measure the depth of leadline and the tension of purse seine. Based on the measurement data, the motion and tension of purse seine at the time of shooting, hauling, and pursing were characterized. The experimental results are summarized as follows ; 1. The shooting and hauling of net were found to be possible in the one boat system experimental operation. 2. At the time of purse seine shooting, the relationship between the depth (Dp) of leadline and elapsed time (Et) was found to be Dp=7.58Et-6.48. 3. At the time of pursing, the relationship between the depth (Dp) of leadline and elapsed time (Et) was found to be Dp=-0.8Et$^2$+7.42Et+92.04. 4. At the time of pursing, the tension (metric tons) of purse seine attained its maximum value (14.7tons) when the elapsed time is 8 minutes. The relationship with the elapsed time was found to be T=-0.13Et$^2$+3.23Et-5.72.

Lightweight Model for Energy Storage System Remaining Useful Lifetime Estimation (ESS 잔존수명 추정 모델 경량화 연구)

  • Yu, Jung-Un;Park, Sung-Won;Son, Sung-Yong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.436-442
    • /
    • 2020
  • ESS(energy storage system) has recently become an important power source in various areas due to increased renewable energy resources. The more ESS is used, the less the effective capacity of the ESS. Therefore, it is important to manage the remaining useful lifetime(RUL). RUL can be checked regularly by inspectors, but it is common to be monitored and estimated by an automated monitoring system. The accurate state estimation is important to ESS operator for economical and efficient operation. RUL estimation model usually requires complex mathematical calculations consisting of cycle aging and calendar aging that are caused by the operation frequency and over time, respectively. A lightweight RUL estimation model is required to be embedded in low-performance processors that are installed on ESS. In this paper, a lightweight ESS RUL estimation model is proposed to operate on low-performance micro-processors. The simulation results show less than 1% errors compared to the original RUL model case. In addition, a performance analysis is conducted based on ATmega 328. The results show 76.8 to 78.3 % of computational time reduction.

Study of Localized Surface Plasmon Polariton Effect on Radiative Decay Rate of InGaN/GaN Pyramid Structures

  • Gong, Su-Hyun;Ko, Young-Ho;Kim, Je-Hyung;Jin, Li-Hua;Kim, Joo-Sung;Kim, Taek;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.184-184
    • /
    • 2012
  • Recently, InGaN/GaN multi-quantum well grown on GaN pyramid structures have attracted much attention due to their hybrid characteristics of quantum well, quantum wire, and quantum dot. This gives us broad band emission which will be useful for phosphor-free white light emitting diode. On the other hand, by using quantum dot emission on top of the pyramid, site selective single photon source could be realized. However, these structures still have several limitations for the single photon source. For instance, the quantum efficiency of quantum dot emission should be improved further. As detection systems have limited numerical aperture, collection efficiency is also important issue. It has been known that micro-cavities can be utilized to modify the radiative decay rate and to control the radiation pattern of quantum dot. Researchers have also been interested in nano-cavities using localized surface plasmon. Although the plasmonic cavities have small quality factor due to high loss of metal, it could have small mode volume because plasmonic wavelength is much smaller than the wavelength in the dielectric cavities. In this work, we used localized surface plasmon to improve efficiency of InGaN qunatum dot as a single photon emitter. We could easily get the localized surface plasmon mode after deposit the metal thin film because lnGaN/GaN multi quantum well has the pyramidal geometry. With numerical simulation (i.e., Finite Difference Time Domain method), we observed highly enhanced decay rate and modified radiation pattern. To confirm these localized surface plasmon effect experimentally, we deposited metal thin films on InGaN/GaN pyramid structures using e-beam deposition. Then, photoluminescence and time-resolved photoluminescence were carried out to measure the improvement of radiative decay rate (Purcell factor). By carrying out cathodoluminescence (CL) experiments, spatial-resolved CL images could also be obtained. As we mentioned before, collection efficiency is also important issue to make an efficient single photon emitter. To confirm the radiation pattern of quantum dot, Fourier optics system was used to capture the angular property of emission. We believe that highly focused localized surface plasmon around site-selective InGaN quantum dot could be a feasible single photon emitter.

  • PDF

Artificial Control of ZnO Nanorods via Manipulation of ZnO Nanoparticle Seeds (산화아연 나노핵의 조작을 통한 산화아연 나노로드의 제어)

  • Shin, Kyung-Sik;Lee, Sam-Dong;Kim, Sang-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.399-399
    • /
    • 2008
  • Synthesis and characterization of ZnO structure such as nanowires, nanorods, nanotube, nanowall, etc. have been studied to multifunctional application such as optical, nanoscale electronic and chemical devices because it has a room-temperature wide band gap of 3.37eV, large exiton binding energy(60meV) and various properties. Various synthesis methods including chemical vapor deposition (CVD), physical vapor deposition, electrochemical deposition, micro-emulsion, and hydrothermal approach have been reported to fabricate various kinds of ZnO nanostructures. But some of these synthesis methods are expensive and difficult of mass production. Wet chemical method has several advantage such as simple process, mass production, low temperature process, and low cost. In the present work, ZnO nanorods are deposited on ITO/glass substrate by simple wet chemical method. The process is perfomed by two steps. One-step is deposition of ZnO seeds and two-step is growth of ZnO nanorods on substrates. In order to form ZnO seeds on substrates, mixture solution of Zn acetate and Methanol was prepared.(one-step) Seed layers were deposited for control of morpholgy of ZnO seed layers by spin coating process because ZnO seeds is deposited uniformly by centrifugal force of spin coating. The seed-deposited samples were pre-annealed for 30min at $180^{\circ}C$ to enhance adhesion and crystallinnity of ZnO seed layer on substrate. Vertically well-aligned ZnO nanorods were grown by the "dipping-and-holding" process of the substrates into the mixture solution consisting of the mixture solution of DI water, Zinc nitrate and hexamethylenetetramine for 4 hours at $90^{\circ}C$.(two-step) It was found that density and morphology of ZnO nanorods were controlled by manipulation of ZnO seeds through rpm of spin coating. The morphology, crystallinity, optical properties of the grown ZnO nanostructures were carried out by field-emission scanning electron microscopy, high-resolution electron microscopy, photoluminescence, respectively. We are convinced that this method is complementing problems of main techniques of existing reports.

  • PDF