• Title/Summary/Keyword: micro structure refinement

Search Result 10, Processing Time 0.027 seconds

Effect of Ti, B, Zr Elements on Grain Refinement and Castability of Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe Casting Alloy (주조용 Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe 합금의 결정립 미세화와 주조특성에 미치는 Ti, B, Zr 첨가원소의 영향)

  • Kim, Heon-Joo;Park, Su-Min
    • Journal of Korea Foundry Society
    • /
    • v.35 no.5
    • /
    • pp.120-127
    • /
    • 2015
  • The effects of Ti, B and Zr on grain refinement and castability were investigated in Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe alloy. Measurement of cooling curve and micro-structure observation were performed to analyze the effects of the addition of minor elements Ti, B and Zr during solidification. The prominence of effect on grain refinement was in increasing order for Ti, Zr and B element. Fine grain size and an increase of the crystallization temperature for ${\alpha}$-Al solution were evident as the amount of addition elements increased in this study. Addition of 0.15wt% Ti was most effective for grain refinement, and the resulting grain size of ${\alpha}$-Al solution for shell mold and steel mold were $72.3{\mu}m$ and $23.5{\mu}m$, respectively. Fluidity and shrinkage tests were perform to evaluate the castability of the alloy. Maximum fluidity length and minimum ratio of micro shrinkage were recorded for 0.15wt% Ti addition due to the effect of the finest grain size.

Effects of the Processing Temperature and the Number of Passes of Equal Channel Angular Pressing on the Microstructure and Hardness of IF Steel (IF강의 미세조직과 경도에 미치는 ECAP 가공온도와 가공횟수의 효과)

  • Yoon, S.C.;Ryu, W.S.;Baik, S.C.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.5 s.95
    • /
    • pp.406-411
    • /
    • 2007
  • The microstructure and the hardness of interstitial free steel processed by equal channel angular pressing (ECAP) was investigated experimentally. ECAP processing of route A and route C was compared with regard to grain refinement by transmission electron micrographs. Micro hardness evolution was correlated with the gram structure produced by ECAP. Especially, the effects of the ECAP processing temperature and the number of processing passes were discussed in terms of grain refinement.

Consolidation of Rapidly Solidified Al-20 wt% Si Alloy Powders Using Equal Channel Angular Pressing (급속응고 Al-20 wt% Si 합금 분말의 ECAP를 통한 고형화)

  • 윤승채;홍순직;서민홍;정영기;김형섭
    • Journal of Powder Materials
    • /
    • v.11 no.3
    • /
    • pp.233-241
    • /
    • 2004
  • In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve both full density and grain refinement of Al-20 wt% Si powders without grain growth, which was considered as a bottle neck of the bottom-up method using the conventional powder metallurgy of compaction and sintering. ECAP (Equal channel angular pressing), one of the most promising method in SPD, was used for the powder consolidation. The powder ECAP processing with 1, 2, 4 and 8 passes was conducted for 10$0^{\circ}C$ and 20$0^{\circ}C$ It was found by microhardness, compression tests and micro-structure characterization that high mechanical strength could be achieved effectively as a result of the well bonded powder contact surface during ECAP process. The SPD processing of powders is a viable method to achieve both fully density and nanostructured materials.

A Study of Preventing Chevron Crack in Cold Extrusion (냉간 압출시 Chevron Crack 방지에 대한 고찰)

  • 최영순;이정환
    • Transactions of Materials Processing
    • /
    • v.6 no.3
    • /
    • pp.221-226
    • /
    • 1997
  • Chevron crack in cold extrusion has been studied in view of deformation conditions and material characteristics. There is V formed chevron crack is occasionally occurred in core part of shaft by multistage free extrusion. Although many research results were reported and theoretical analyses were accompanied, in this study we discussed practical method to prevent chevron crack in the field of working conditions and material characteristics. We have found that chevron crack is eliminated under condition of high hydrostatic state in deformation and decreased segregation, refinement of micro structure of materials.

  • PDF

Refinement Behavior of Coarse Magnesium Powder by High Energy Ball Milling (HEBM) (고에너지 밀링공정을 이용한 조대 마그네슘 분말의 미세화 거동)

  • Song, Joon-Woo;Kim, Hyo-Seob;Kim, Hong-Moule;Kim, Taek-Soo;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.302-311
    • /
    • 2010
  • In this research, the refinement behavior of the coarse magnesium powders fabricated by gas atomization was investigated as a function of milling time using a short duration high-energy ball milling equipment, which produces fine powders by means of an ultra high-energy within a short duration. The microstructure, hardness, and formability of the powders were investigated as a function of milling time using X-ray diffraction, scanning electron microscopy, Vickers micro-hardness tester and magnetic pulsed compaction. The particle morphology of Mg powders changed from spherical particles of feed metals to irregular oval particles, then platetype particles, with increasing milling time. Due to having HCP structure, deformation occurs due to the existence of the easily breakable C-axis perpendicular to the base, resulting in producing plate-type powders. With increasing milling time, the particle size increased until 5 minutes, then decreased gradually reaching a uniform size of about 50 micrometer after 20 minutes. The relative density of the initial power was 98% before milling, and mechanically milled powder was 92~94% with increase milling time (1~5 min) then it increased to 99% after milling for 20 minutes because of the change in particle shapes.

Properties of the Green Gold Alloys with Indium Content

  • Song, Jeongho;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.221-226
    • /
    • 2018
  • The property changes of 18, 14, and 8K green gold alloys for jewelry are observed by adding 0.0, 3.0, and 5.0 wt% of indium (In), respectively. To check the composition of the alloys, an energy dispersive spectroscopy (EDS) analysis is conducted. Color and microstructure analysis is executed through bare-eye, macro camera, UV-VIS-NIR-colormeter, and optical microscope. The melting point, wetting angle, and hardness are measured using TGA-DTA, a wetting angle tester, and a Vickers hardness tester. The EDS analysis result demonstrates that each of the green gold alloys was manufactured with purposed contents. The color analysis result shows that the color of the alloys is similar to the color of the conventional 4 wt%-Cd 18K green gold, and the green color improves as the In content increases. The micro structure analysis result demonstrates that grain refinement improves as the amount of In increases. Enhancements in the melting point, wettability, and Vickers hardness changes appear as the In content increases and Au content decreases. The hardness is up to 260, which implies good durability. Therefore, the results suggest that the proposed 18, 14, and 8K In-added green gold alloys enhance the properties of jewelry products with regard to the green color, castability, and durability.

The Fabrication and Evaluation of SMA Ribbons for Micro Actuator Application (마이크로 엑츄에이터용 형상기억 리본 제조 및 제특성 평가)

  • 이영수;장우양
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.554-554
    • /
    • 2000
  • To improve mechanical properties of Cu-Al-Ni alloy by the grain refinement, Cu-Al-Ni SMA ribbons were fabricated by melt spinning apparatus. The variations of microstructure, mechanical properties and transformation characteristics with the condition of rapid solidification and annealing time-temperature were investigated in Cu-Al-Ni SMA ribbons. The ribbons fabricated by melt spinning obtained around 1.5nm in width and 50-60${\mu}{\textrm}{m}$ in thickness. With increasing wheel speed in order of 10m/s, 15m/s, 20m/s, 30m/s and 3m/s, the grain size was decreased in order of 10${\mu}{\textrm}{m}$, 6.25${\mu}{\textrm}{m}$, 5.5${\mu}{\textrm}{m}$, 3${\mu}{\textrm}{m}$ and 3${\mu}{\textrm}{m}$. $M_{s}$ and $A_{s}$ temperature were decreased with decreasing grain size. By X-ray diffraction test, ordered $\beta$$_1$ phase was observed in all the SMA ribbons and the volume friction of it was increased with increasing wheel speed. With increasing wheel speed, strain was increased from 4.2% to 5.8% and fracture mode has changed from mixture of intergranular and dimple fracture to mixture of fiber structure and dimple fracture. The grain size of ribbon heat-treated at $600^{\circ}C$ was increased with increasing time. In the heat-treated ribbons at 55$0^{\circ}C$, ${\gamma}$$_2$ phases were observed.d.d.

  • PDF

Effects of Te on the Anti-Galling Properties of Ni-Cr-Sn-Bi Alloy (Ni-Cr-Sn-Bi합금의 anti-galling 특성에 미치는 Te의 영향)

  • Ha Heon-Phil;Kim Kyung-Tak;Shim Jae Dong;Kim Yong Kyu
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.14-18
    • /
    • 2005
  • Ni-Cr-Sn-Bi alloys were prepared by air melting and sand casting method and their anti-galling behaviors were examined. Anti-galling properties were dominantly influenced by Bi-rich low temperature precipitates. Alloying effects on the anti-galling properties were investigated for several alloying elements to improve anti-galling properties of the alloy. An alloy with $1-3wt\%$ of Te showed markedly improved anti-galling properties. Metallographic and tribological tests were carried out to find out reasons for excellent properties. It was found that Te containing alloy has finely distributed precipitates of Bi-rich phase. The addition of Te changed the morphology of the Ni-rich primary phase from globular to fine dendritic. As a result, the anti-galling phase precipitated between dendrite arms with fine distribution showed excellent anti-galling properties.

NUMERICAL STUDY ON THE UNSTEADY FLOW PHYSICS OF INSTECTS' FLAPPING FLIGHT USING FLUID-STRUCTURE INTERACTION (FSI를 활용한 2차원 곤충날개 주위 유동장 해석)

  • Lee, K.B.;Kim, J.H.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.151-158
    • /
    • 2009
  • To implement the insects' flapping flight for developing flapping MAVs(micro air vehicles), the unsteady flow characteristics of the insects' forward flight is investigated. In this paper, two-dimensional FSI(Fluid-Structure Interaction) simulations are conducted to examine realistic flow features of insects' flapping flight and to examine the flexibility effects of the insect's wing. The unsteady incompressible Navier-Stokes equations with an artificial compressibility method are implemented as the fluid module while the dynamic finite element equations using a direct integration method are employed as the solid module. In order to exchange physical information to each module, the common refinement method is employed as the data transfer method. Also, a simple and efficient dynamic grid deformation technique based on Delaunay graph mapping is used to deform computational grids. Compared to the earlier researches of two-dimensional rigid wing simulations, key physical phenomena and flow patterns such as vortex pairing and vortex staying can still be observed. For example, lift is mainly generated during downstroke motion by high effective angle of attack caused by translation and lagging motion. A large amount of thrust is generated abruptly at the end of upstroke motion. However, the quantitative aspect of flow field is somewhat different. A flexible wing generates more thrust but less lift than a rigid wing. This is because the net force acting on wing surface is split into two directions due to structural flexibility. As a consequence, thrust and propulsive efficiency was enhanced considerably compared to a rigid wing. From these numerical simulations, it is seen that the wing flexibility yields a significant impact on aerodynamic characteristics.

  • PDF

A Study on the Performance Improvement and Long-Term Strength Properties of Eco-cement Concrete (에코시멘트 콘크리트의 장기강도 특성 및 성능 향상 방안에 관한 연구)

  • Park, Kwang-Min;Lee, Gun-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.817-826
    • /
    • 2011
  • Concrete using eco-cement has a problem with long-term strength development. However, currently, a long-term strength development mechanism is not confirmed, resulting in a lack of application of eco-cement in construction fields. In this study, the curing humidity influence on development in long-term strength of concrete using eco-cement and the relationship between strength and pore structure were examined. The results showed that wet cured eco-cement with a high water/cement ratio showed serious long-term strength reduction due to non-reduction of pore volume (pore size over 10 nm) in mortar caste with eco-cement. Also, the study results on improvement of long-term strength of eco-cement by partial replacement with ordinary portland cement and finely-ground fly ash showed that both of these alternatives improved long-term strength of concrete caste with eco-cement due to gradual refinement of their micro-structure.