• 제목/요약/키워드: micro spindle system

검색결과 37건 처리시간 0.025초

주축속도변동을 이용한 공기회전축식 미세구멍가공의 감시제어 (Monitoring and Control of the Air Spindle Based Microdrilling Using Spindle Speed Variations)

  • 안중환;김화영;이응숙;오정욱
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1176-1181
    • /
    • 1995
  • Microdrilling is one of the most difficult operations because of the poor chip discharge and the weakness of tool. This study is concerned about the development of a microdrilling monitoring system that is useful for minimizing the tool breakage and enhancing the machinability in the air spindle based microdrilling. The system is composed of a drilling state detection unit and an adaptive step-feed control unit that controls the micro-stepping motor driven spindle axis. Drilling states such as overload, tood breakage are recognized by the change of the air spindle speed which is measured via the reflective photo sensor. Based on the monitoring results, the adaptive step-feed control algorithm adjusts the step increment to keep the decrease of spindle speed within a specified range. The results of evaluation tests have shown that the developed system is very effective to prevent the breakage of microdrill and improves the productivity in comparison with the conventional microdrilling.

실리콘 미세구멍가공기술에 관한 연구 (A Study on the Micro Hole Drilling of Silicon)

  • 허찬;이창규;채승수;박세진;이종찬
    • 한국기계가공학회지
    • /
    • 제4권1호
    • /
    • pp.18-23
    • /
    • 2005
  • This paper reports experimental results on microdrilling process for silicon parts used in semiconductor equipments. An experimental system was developed consisting of a high speed precision machine, microscope system, and project profile instrument. The experimental results indicate that the amount of chipping at the entrance and exit of micro hole decreases as the spindle speed increases up to 18,000 rpm. At higher spindle speed, however, the amount of chipping increases rapidly. The amount of chipping and infeed rate show proportional relationship up to 20 m/min of infeed rate. Beyond that infeed rate, however, sudden increase in the amount of chipping has occurred.

  • PDF

Micro/Meso부품 대응형 마이크로 기계가공시스템 기술 연구 (Design of Micro-Machining System for Micro/Meso Mechanical Component)

  • 박종권;경진호;노승국;김병섭;박중호
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.377-382
    • /
    • 2005
  • This paper describes the design of micro machine tools system for mechanical machining of micro/meso scale mechanical parts. The micro machining systems such as $\mu-Late$, $\mu-milling/drilling$ machine and $\mu-grinding$ machine are the basic elements constructing $\mu-factory$ which gains more attention recently because of increasing needs of mico and nano-parts in various industrial and medical area. A miniaturized 3-axis milling machine with VCM stage and air spindle and palm-top size micro-late are designed, and air bearing stage and stepwise linear motion system with PZT are studied for motion system. The micro cutting characteristics are investigated experimentally, and reconfigurable machine structures are also considered.

  • PDF

CNC 공작기계 스핀들 유닛의 5자유도 열변형 오차측정 및 모델링 기술 (Thermal Error Measurement and Modeling Techniques for the 5 Degree of Freedom(DOF) Spindle Unit Drifts in CNC Machine Tools)

  • 박희재;이석원;권혁동
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1343-1351
    • /
    • 2000
  • Thermally induced errors have been significant factors affecting the machine tool accuracy. In this paper, the spindle thermal error has been focused, where the 5 degree of freedom thermal error components are considered. An effective measurement system has been devised for the 5 DOF thermal errors, consisting of gap sensors and thermocouples around the micro-computer interfaced environment. Several thermal error modeling techniques are also implemented for the thermal error prediction: multiple linear regression, neural network and system identification methods, etc. The performance of the thermal error modeling techniques is evaluated and compared, giving the system identification method as the optimum model having the least deviation. The developed system for the thermal error measurement and modeling was practically applied to a CNC machining center, and the spindle thermal errors were effectively compensated around the micro computer-machine tool interfaced networks. The machine tool accuracy was improved about 4-5 times typically.

유연 회전축의 다물체 동역학 모델링 및 위상 조절법을 이용한 진동 제어 (Multi-Body Dynamic Modeling for a Flexible Rotor and Vibration Control using a Novel Phase Adjusting Technique)

  • 정훈형;조현민;김재실;조수용
    • 한국기계가공학회지
    • /
    • 제10권1호
    • /
    • pp.87-92
    • /
    • 2011
  • This article proposes a new technique of the dynamic model using multi-body dynamic analysis tool for a flexible main spindle rotor system with a novel phase adjusting control technique for the purpose of an active control of rotor vibration. The dynamic model is used as a plant model. Also in order to make control system, a component parameters and phase controller is composed and simulated by SIMULINK. The vibration is reduced to 50%. Therefore the ADAMS dynamic model for the flexible main spindle rotor and the phase adjusting control techniques may be effective for the suppressing the vibration and helpful for the future active control for rotor vibration.

소형 스핀들 시스템 적용을 위한 형상기억합금 기반 공구 클램핑 장치의 체결특성 고찰 (Investigation for Clamping Properties of the Tool Clamping Device Based on the Shape Memory Alloy for Application of a Micro Spindle System)

  • 신우철;노승국;박종권;이득우;정준모
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.9-14
    • /
    • 2007
  • In this paper, a rotating tool clamping device was developed based on a shape memory alloy(SMA) and its feasibility as a tool holder was experimentally explored. The SMA-based device was able to alter clamping to unclamping through temperature control within 1 second. The means and repeatability(${\sigma}$) of the tool clamping force were 185.5N and 6N respectively and its drifts were less than 3% for an hour. Considering the temperature hysteresis of the SMA-based tool clamping device, it is necessary to heat the SMA ring to around $50^{\circ}C$ after tool change to obtain more clamping force.

Micro 선반을 이용한 Micro/Meso 절삭에 관한 연구 (Micro/Meso Cutting with Micro Turning Lathe)

  • 고태조;김희술;배영호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.1025-1028
    • /
    • 2002
  • In this paper, a micro-turning lathe is introduced for micro machining of aluminum rod. To give feed motion, stepwise motion[2] actuators are used instead of the conventional inchworm mechanism. These are consisted of two Piezoelectric ceramics; one is for feeding the slider, and the other is for clamping the slider in the guide way of the body. The guide is V-form. The linearity and positional accuracy of the actuators is good enough far high precision motion. Since the system is more compact than the conventional system using three Piezoelectric ceramics, it is applicable for the micro-machine or MEMS unit. To fabricate the lathe, a small spindle unit with ball bearings of diameter of 10 millimeter is built-up on the top the slider. The motion is feed backed with miniaturized linear encoder attached each axis slider. The diamond tool bite is used for cutting tool. The machining is tried to make small diameter rod. The possible diameter that can be machined in this machine is presented as well as chip formation, surface roughness, and machinability.

  • PDF

WEDG 전극가공에서의 전극표면형상의 실험적 고찰 (Experimental study on the surface integrity of electrode for WEDG process)

  • 안현민;김영태;박성준;이송규;이상조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.218-222
    • /
    • 2002
  • Micro-EDM is generally used far machining micro holes, pockets, and 3-D structures. For micro-EDM, first of all, micro-electrode fabrication is needed and WEDC system is proposed for tool electrode fabrication method. When tool electrode is fabricated using WEDG system, its characteristics are under the control of many EDM parameters. Also relations between the parameters affect electrode fabrication. In this study, experiments are carried out to analyze effects of EDM parameters about electrode surface integrity on micro-electrode fabrication. Experimental method and analysis are used to experimental design method. Factors used in experiments are composed of capacitance, resistance, pause time, wire feed rate, spindle rotating speed. As a result of experiments, capacitance and resistance affect electrode surface.

  • PDF

알루미늄 합금의 고속 미소 선삭에 있어서 표면거칠기 특성 (Characteristics of Surface Roughness in the High Speed Micro Turning of Aluminum Alloy)

  • 성철현;김형철;김기수
    • 한국정밀공학회지
    • /
    • 제16권7호
    • /
    • pp.94-100
    • /
    • 1999
  • This study adopted the ultra precision machining system which was composed of an air bearing spindle, a granite bed, air pad and a linear feeding mechanism. It also applied the cutting experiment on the aluminum alloy. To evaluate the safety of high speed machining, we examined the surface roughness according to the changes of cutting speed and obtained the speed limit. This paper also studied the effect of cutting condition such as feed rates and depths of cut on the surface roughness within the speed limit. This provided practical information regarding ultra precision machining.

  • PDF

Tool-Setup Monitoring of High Speed Precision Machining Tool

  • Park, Kyoung-Taik;Shin, Young-Jae;Kang, Byung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.956-959
    • /
    • 2004
  • Recently the monitoring system of tool setting in high speed precision machining center is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and the productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining tool and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3$^{\sim}$20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setup easy, quick and precise in high speed machining tool. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setup monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000${\sim}$60,000 rpm. The dynamic phenomena of tool-setup are analyzed by implementing the monitoring system of rotating tool system and the non-contact measuring system of micro displacement in high speed.

  • PDF