• Title/Summary/Keyword: micro parts

Search Result 661, Processing Time 0.029 seconds

A Novel Cooling Method by Acoustic Streaming Induced by Ultrasonic Resonator (초음파 진동자에 의해 유도된 음향유동을 이용한 첨단 냉각법)

  • 노병국;이동렬
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.217-223
    • /
    • 2003
  • A novel cooling method induced by acoustic streaming generated by ultrasonic vibration at 30㎑ is presented. Ultrasonic vibration is obtained by piezoelectric devices and the maximum vibration amplitude of 50 m is achieved by including a horn, mechanical vibration amplifier in the system and making the complete system resonate. To investigate the enhancement of heat transfer capability of acoustic streaming, the temperature variations of heat source and air in the vicinity of heat source are measured in real-time. It is observed that acoustic streaming is instantly induced by ultrasonic vibration, resulting in the significant temperature drop due to the bulk air flow caused by acoustic streaming. In addition, it is observed that the cooling effect on the heat source is maximized when the gap between the ultrasonic vibrator and heat source coincides with the multiples of half-wavelength of the ultrasonic wave. This fact results from the resonance of the sound wave. The theoretical analysis of the dependence on the gap is also accomplished and verified by experiment. The advantage of the proposed cooling method by acoustic streaming is noise-free due to the ultrasonic vibration and maintenance-free because of the absence of moving parts. Moreover. This cooling method can be utilized to the nano and micro-electro mechanical systems, where the fan-based conventional cooling method can not be employed.

Development of an Automatic Sprayer Arm Control System for Unmanned Pest Control of Pear Trees (배나무 무인 방제를 위한 약대 자동 제어시스템 개발)

  • Hwa, Ji-Ho;Lee, Bong-Ki;Lee, Min-Young;Choi, Dong-Sung;Hong, Jun-Taek;Lee, Dae-Weon
    • Journal of Bio-Environment Control
    • /
    • v.23 no.1
    • /
    • pp.26-30
    • /
    • 2014
  • Purpose of this study was a development of a sprayer arm auto control system that could be operated according to distance from pear trees for automation of pest control. Auto control system included two parts, hardware and software. First, controller was made with an MCU and relay switches. Two types of ultra-sonic sensors were installed to measure distance from pear trees: one on/off type that detect up to 3 m, and the other continuous type providing 0~5 V output corresponding to distance of 0~3 m. Second, an auto control algorithm was developed to control. Each spraying arm was controlled according to the sensor-based distance from the pear trees. And it could dodge obstacles to protect itself. Max and min signal values were eliminated, when five sensor signals was collected, and then signals were averaged to reduce sensor's noises. According to results of field experiment, auto control test result was better than non auto control test result. Spraying rates were 69.25% (left line) and 98.09% (right line) under non auto control mode, because pear trees were not planted uniformly. But, auto control test's results were 92.66% (left line) and 94.64% (right line). Spraying rate was increased by maintaining distance from tree.

A Study on the Development of the Single Station Fixed Temperature Detector of Low Power Consumption for Residential Fire Prevention (주택화재 예방을 위한 저소비 전력형 단독경보형 정온식감지기 개발에 관한 연구)

  • Park, Se-Hwa;Cho, Jae-Cheol
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.61-68
    • /
    • 2010
  • In this paper, a research and development result for the implementation of single station fixed temperature detector for residential fire prevention is described. The detector was developed for the certification in Japanese market because of very low domestic market situation. It is in the situation that there is no other regulation especially for residential detectors in Korea, Japanese case has been reviewed. Investigation of domestic legal circumstances and a comparative study for the test standard owned by KFI (Korea Institute of Fire Industry & Technology) and JFEII (Japan Fire Equipment Inspection Institute) respectively are also indicated. The detector alarms with a buzzer and an indicating LED. In the implementation ultra low power MCU(Micro Controller Unit) is applied to control the sleeping state and the monitoring state properly with low current consumption. To sense the temperature fast response thermistor is adopted in the design of fixed temperature residential detector. Automatic test function and alarm stop function are also considered in the design. The major factors which influence to current consumption are explained for the purpose of design reference. Main electronics circuit parts related to it's characteristics of the detector are described. It is explained that the measured current and experimental result of the battery discharge can be met over 10 years operation.

Flow Visualization of Acoustic Streaming Induced by Ultrasonic Vibration Using Particle Imaging Velocimetry (PIV를 이용한 초음파 진동에 의해 유도된 음향유동의 가시화)

  • 노병국;권기정;이장연;이동렬
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.528-535
    • /
    • 2004
  • Ultrasonic Vibrator is designed to achieve the maximum vibration amplitude at 30 kHz by in-cluding a horn (diameter, 40 mm), mechanical vibration amplifier at the top of the ultrasonic vibrator in the system and making the complete system resonate. In addition, it is experimentally visualized by particle imaging velocimetry (PIV) that the acoustic streaming velocity in the gap is at maximum when the gap between the ultrasonic vibrator and stationary plate agrees with the multiples of half-wavelength of the ultrasonic wave. This fact results from the resonance of the sound wave and the theoretical analysis of that is also accomplished and verified by experiment. It is observed that the magnitude of the acoustic streaming dependent upon the gap between the ultrasonic vibrator and stationary plate possibly changes due to the measurement of the average velocity fields of the acoustic streaming induced by the ultrasonic vibration at resonance and non-resonance. There exists extremely small average velocity at non-resonant gaps while the relatively large average velocity exists at resonant gaps compared with non-resonant gaps. It also reveals that there should be larger axial turbulent intensity at the hub region of the vibrator and at the edge of it in the resonant gap where the air streaming velocity is maximized and the flow phenomena is conspicuous than that at the other region. Because the variation of the acoustic streaming velocity at resonant gap is more distinctive than that at non-resonant gap, shear stress increases more in the resonant gap and is also maximized at the center region of the vibrator except the local position of center (r〓0). At the non-resonant gap there should be low values of vorticity distribution, but in contrast to the non-resonant gap, high and negative values of it exist at the center region of the vibrator with respect to the radial direction and in the vicinity of the middle region with respect to the axial direction. Acoustic streaming is noise-free due to the ultrasonic vibration and maintenance-free because of the absence of moving parts. Moreover, the proposed method by acoustic streaming can be utilized to the nano and micro-electro mechanical systems as a driving mechanism in addition to the augmentation of the streaming velocity.

Characterization and Formation Mechanism of Zr-Cu and Zr-Cu-Al Metallic Glass Thin Film by Sputtering Process

  • Lee, Chang-Hun;Sun, Ju-Hyun;Moon, Kyoung-Il;Shin, Seung-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.271-272
    • /
    • 2012
  • Bulk Metallic Glasses (BMGs or amorphous alloy) exhibit high strength and good corrosion resistance. Applications of thin films and micro parts of BMGs have been used a lot since its inception in the research of BMGs. However, Application and fabrication of BMGs are limited to make structural materials. Thin films of BMGs which is sputtered on the surface of structural materials by sputtering process is used to improve limits about application of BMGs. In order to investigate the difference of properties between designed alloys and thin films, we identified that thin films deposited on the surface that have the characteristic of the amorphous films and the composition of designed alloys. Zr-Cu (Cu=30, 35, 38, 40, 50 at.%) and Zr-Cu-Al (Al=10 at.% fixed, Cu=26, 30, 34, 38 at.%) alloys were fabricated with Zr (99.7% purity), Cu (99.997% purity), and Al (99.99% purity) as melting 5 times by arc melting method before rods 2mm in diameter was manufactured. In order to analyze GFA (Glass Forming Ability), rods were observed by Optical Microscopy and SEM and $T_g$, $T_x$, ($T_x$ is crystallization temperature and $T_g$ is the glass transition temperature) and Tm were measured by DTA and DSC. Powder was manufactured by Gas Atomizer and target was sintered using powder in large supercooled liquid region ($=T_x-T_g$) by SPS(Spark Plasma Sintering). Amorphous foil was prepared by RSP process with 5 gram alloy button. The composition of the foil and sputtered thin film was analyzed by EDS and EPMA. In the result of DSC curve, binary alloys ($Zr_{62}Cu_{38}$, $Zr_{60}Cu_{40}$, $Zr_{50}Cu_{50}$) and ternary alloys ($Zr_{64}Al_{10}Cu_{26}$, $Zr_{56}Al_{10}Cu_{34}$, $Zr_{52}Al_{10}Cu_{38}$) have $T_g$ except for $Zr_{70}Cu_{30}$ and $Zr_{60}Al_{10}Cu_{30}$. The compositions with $T_g$ made into powders. Figure shows XRD data of thin film showed similar hollow peak.

  • PDF

DEVELOPMENT OF THE MECHANICAL STRUCTURE OF THE MIRIS SOC (MIRIS 우주관측카메라의 기계부 개발)

  • Moon, B.K.;Jeong, W.S.;Cha, S.M.;Ree, C.H.;Park, S.J.;Lee, D.H.;Yuk, I.S.;Park, Y.S.;Park, J.H.;Nam, U.W.;Matsumoto, Toshio;Yoshida, Seiji;Yang, S.C.;Lee, S.H.;Rhee, S.W.;Han, W.
    • Publications of The Korean Astronomical Society
    • /
    • v.24 no.1
    • /
    • pp.53-64
    • /
    • 2009
  • MIRIS is the main payload of the STSAT-3 (Science and Technology Satellite 3) and the first infrared space telescope for astronomical observation in Korea. MIRIS space observation camera (SOC) covers the observation wavelength from $0.9{\mu}m$ to $2.0{\mu}m$ with a wide field of view $3.67^{\circ}\times3.67^{\circ}$. The PICNIC HgCdTe detector in a cold box is cooled down below 100K by a micro Stirling cooler of which cooling capacity is 220mW at 77K. MIRIS SOC adopts passive cooling technique to chill the telescope below 200 K by pointing to the deep space (3K). The cooling mechanism employs a radiator, a Winston cone baffle, a thermal shield, MLI (Multi Layer Insulation) of 30 layers, and GFRP (Glass Fiber Reinforced Plastic) pipe support in the system. Optomechanical analysis was made in order to estimate and compensate possible stresses from the thermal contraction of mounting parts at cryogenic temperatures. Finite Element Analysis (FEA) of mechanical structure was also conducted to ensure safety and stability in launching environments and in orbit. MIRIS SOC will mainly perform Galactic plane survey with narrow band filters (Pa $\alpha$ and Pa $\alpha$ continuum) and CIB (Cosmic Infrared Background) observation with wide band filters (I and H) driven by a cryogenic stepping motor.

The Changes of Timespace and Locality in the Yoseba, Kotobuki (요세바 고도부키에서의 시공간과 로컬리티의 변화)

  • Jo, Hyun-Mi
    • Journal of the Korean association of regional geographers
    • /
    • v.22 no.2
    • /
    • pp.383-396
    • /
    • 2016
  • The most direct influence on the development of Yoseba Kotobuki was the end of World War II. As city rebuilding projects began vibrantly overlapping, the vitalization in Kotobuki was adopted by the laborers coming in from various parts throughout of the country. Just as the period of economic revival from the special demand created by the Korean War got underway, the aftermath of the worldwide economic recession due to the oil crisis had a direct effect on even the labor market. Moreover, as the vitality of the labor market gradually fizzled out from the long-term economic recession caused by the burst of the economic bubble, the labor base that had once been the pillar of the Japanese economy began to age and could no longer perform this role. As these aging laborers came to receive public assistance, the doya managers began repairing the doya and Kotobuki began to change again. The historical times which affected the changes in Yoseba Kotobuki's locality are in the lives of its members--the laborers--and the times themselves, which operate on the micro level; however, in those times, the national and the global time of the nation-state interact and are linked in multiple layers.

  • PDF

Optimum Design of Lock Snap-fit Using Design of Experiment (실험계획법을 이용한 이탈방지 스냅핏의 최적설계)

  • Son, In-Seo;Shin, Dong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.378-385
    • /
    • 2017
  • This study investigated the design of a snap fit, which is widely used for fastening plastic parts. We analyzed the assembly mechanism of a lock snapfit, measured the assembly force and separation force based on the design of experiments, and derived a regression equation through an analysis of variance. The response surface methodology was also used. Polybutylene terephthalate was used to fabricate specimens, and the assembly force and separation force were measured using a micro-tensile tester. The length, width, thickness, and interference were considered as factors. A second-order regression model was used to derive the regression equation. The assembly force decreased with increasing length and width, but it increased with increasing thickness and interference. The finite element method was used to analyze the assembly mechanics. The width decreased the assembly force by increasing the ductility. The influences of the factors for low assembly force and high release force were shown to be opposite to each other. It was necessary to design a structure that minimized the assembly force while maintaining an appropriate level of separation force.

Herbicidal Activity of Essential Oil from Amyris (Amyris balsamifera) (아미리스 정유의 제초활성)

  • Yun, Mi Sun;Yeon, Bo-Ram;Cho, Hae Me;Choi, Jung Sup;Kim, Songmun
    • Weed & Turfgrass Science
    • /
    • v.1 no.4
    • /
    • pp.44-49
    • /
    • 2012
  • The objective of this study was to know the herbicidal activity of the essential oil from amyris (Amyris balsamifera). In a seed bioassay experiment, the amyris essential oil inhibited the growth of rapeseed (Brassica napus) by fifty percent at 8.8 ${\mu}g\;g^{-1}$. And in a greenhouse experiment, sorghum, barnyard grass and Indian jointvetch, which was applied in above-ground parts, with the amyris essential oil at 4,000 ${\mu}g\;ml^{-1}$ showed visual injuries of 90, 70, and 70, respectively (0, no damage; 100, total damage). However, soil application of the essential oil did not show such herbicidal injuries. In a field experiment, foliar application of the amyris essential oil at 5% controlled effectively weeds such as barnyardgrass, shepherd's purse, and clover in 24 hours. Our results indicated that the amyris essential oil had herbicidal activity. To understand the composition of the amyris essential oil, the oil was analyzed by gas chromatography-mass spectometry with solid-phase micro-extraction apparatus. There were 15 organic chemicals in the oil and the major constituents were calarene, elemol, ${\gamma}$-eudesmol, curcumene, ${\beta}$-sesquiphellandrene, zingiberene, selina-3,7(11)-diene, 1,3-diisopropenyl-6-methyl-cyclohexene, ${\beta}$-bisabolene, and ${\beta}$-maaliene. Overall results suggest that the amyris essential oil had a herbicidal activity with fast, contact, and non-selective mechanism.

The effect of plasma treatment to improve adhesion strength of parylene-C coated medical grade SUS304 (Parylene-C 코팅된 의료용 SUS304 소재의 결합력 향상을 위한 플라즈마 처리 효과)

  • Kim, Dong-Guk;Song, Tae-Ha;Jeong, Yong-Hoon;Kang, Kwan-Su;Yoon, Deok-kyu;Kim, Min-Uk;Woo, Young-Jae;Seo, Yo-Han;Kim, Kyung-Ah;Roh, Ji-hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.390-397
    • /
    • 2022
  • Parylene-C which was mainly used for industries such as electronics, machinery and semiconductors has recently been in the spotlight in the medical field due to its properties such as corrosion resistance and biocompatibility. In this study we intend to derive a plan to improve the bonding strength of Parylene-C coating with the SUS304 base material for medical use which can be applied to various medical fields such as needles, micro needles and in vitro diagnostic device sensors. Through plasma pretreatment the bonding strength between Parylene-C and metal materials was improved. It was confirmed that the coated surface was hydrophobic by measuring the contact angle and the improvement of the surface roughness of the sample manufactured through CNC machining was confirmed by measuring the surface roughness with SEM. Through the above results, it is thought that it will be effective in increasing usability and reducing pain in patients by minimizing friction when inserting medical devices and in contact with skin. In addition it can be applied to various application fields such as human implantable stents and catheters, and is expected to improve the performance and lifespan of medical parts.