• Title/Summary/Keyword: micro parts

Search Result 660, Processing Time 0.037 seconds

A Study on the Micro Tool Fabrication using Electrolytic In-process Dressing (전해 연속 드레싱을 이용한 마이크로 공구 제작)

  • 이현우;최헌종;이석우;최재영;정해도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.171-178
    • /
    • 2002
  • With increasing the needs for micro and precision parts, micro machining technology using micro tools has been studied to fabricate a small part with high density such as electronics, optics, communications, and medicine industry more than before. Though these micro tools have developed rapidly, it is difficult to apply them to micro fabrication technologies, because of the inherent manufacturing. In this study, micro tools (WC) to produce micro structures and parts were manufactured by cylindrical grinding machine employing ELID (Electrolytic In-process Dressing) technique and the micro tools are fabricated as square shape with the dimension less than 100${\mu}{\textrm}{m}$. With the micro tools on the same machine, characteristics of micro grooving and drilling are evaluated. Also we compare normal micro machining with ultrasonic micro machining on the vibration table. It is confirmed that the developed micro tools are fully applicable to micro grooving, micro drilling and free form cutting.

A Study on the Micro Tool Fabrication Technology employing ELID(Electrolytic In-process Dressing) Technique (전해 연속 드레싱을 이용한 마이크로 공구 제작 기술)

  • 최재영;이현우;최헌종;이석우;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.508-511
    • /
    • 2002
  • With increasing the needs for micro and precision parts, micro machining technology using micro tools has been studied to fabricate a small part with high density such as electronics, optics, communications, and medicine industry more than before. Though these micro tools have developed rapidly, it is difficult to apply them to micro fabrication technologies, because of the inherent manufacturing. In this study, micro tools(wc) to produce micro structures and parts were manufactured by cylindrical grinding machine employing ELID(Electrolytic In-process Dressing) technique and good dimensional accuracy was achieved. Furthermore we researched the characteristics of machining on the micro drilling using micro drills and manufactured micro tools. Finally it is confirmed that manufactured micro tools can be used for micro machining.

  • PDF

A Study on the Micro/Meso Machining Using Micro Machine (초소형 공작 기계를 이용한 Micro/Meso 가공)

  • Kim, Jae-Gun;Ko, Tae-Jo;Kim, Hee-Sul;Chung, Byoung-Muk
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1793-1797
    • /
    • 2003
  • After the micro turning lathe was developed in the last year by AMR Laboratory in Yeungnam university, a micromilling machine is developed for micro/meso machining. This machine is integrated with PZT-driven micro-sliders, micro-linear encoders, aerostatic spindle which has maximum 150,000 rpm. It is applicable to milling and drilling of micro scale. This paper presents the possibility of micro/meso machining and characteristics of micro end milling process by using micro machine. A machining of micro parts using 0.2 mm flat end mill was achieved by micro-milling machine. Experimental results show the machining capability and positional accuracy of this machine is good enough for machining micro parts.

  • PDF

Development of Chassis Parts Using High Toughness Micro-alloyed Steel (고인성 비조질강 샤시부품 개발)

  • Lee, Si-Yup;Kim, Hyuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.1-6
    • /
    • 2012
  • This paper developed the chassis part as micro-alloyed steel with high toughness. The performance of micro-alloy steels are superior to similar heat treated steels. The strengthening effects of vanadium make micro-alloyed steels particularly suited for high-strength-steel applications. The disadvantages are that ductility and toughness are not as good as quenched and tempered (Q&T) steels. Precipitation hardening increases strength but may contribute to brittleness. Toughness can be improved by reducing carbon content and titanium additions. dispersed titanium nitrides (TiN) formed by titanium additions effectively prevents grain coarsening. Grain refinement increases strength but also improves toughness. For the chassis parts using high toughness micro-alloy steel, it had proven superior to a plain steel forging by static strength test and endurance test.

Injection Molding Experiments for Small Diameter Column (미소 원주의 사출 성형 실험)

  • 제태진;이응숙;김재구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.85-88
    • /
    • 1995
  • Recently, the micro mold maching techining technology is developed by means of the mechanical and high energy beam process. It is possible to make the micro structure mold with high aspect ratio by the LIGA technology. This mode is used for mass production of plastic parts by the micro injection molding method. In this study, we intend to research on the basic technology of micro injection molding. As the result, we developed the injection molding technology for small column plastic parts which diameter is 500 .mu. m and 200 .mu. m respectively with wbout aspect ratio 20.

  • PDF

Fabrication and Characterization of Micro parts by Mechanical Micro Machining: Precision and Cost Estimation (기계식 마이크로 머시닝을 이용한 마이크로 형상의 특성과 비용 평가)

  • Kang, Hyuk-Jin;Choi, Woon-Yong;Ahn, Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.1 s.190
    • /
    • pp.47-56
    • /
    • 2007
  • Recently, demands on mechanical micro machining technology have been increased in manufacturing of micro-scale precision shapes and parts. The main purpose of this research is to verify the accuracy and cost efficiency of the mechanical micro machining. In order to measure the precision and feasibility of mechanical micro machining, various micro features were machined. Aluminum molds were machined by a 3-axis micro stage in order to fabricate microchips with $200{\mu}m$ wide channel for capillary electrophoresis, then the same geometry of microchip was made by injection molding. To evaluate the cost efficiency of various micro manufacturing processes, cost estimation for mechanical micro machining was conducted, and actual costs of microchips fabricated by mechanical micro machining, injection molding, and MEMS (Micro electro mechanical system) were compared.

A Study on the Mechanical Micro Machining System set-up and Applications (기계적 미세 가공 시스템 구성 및 응용 연구)

  • 제태진;이응숙;최두선;이선우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.934-937
    • /
    • 2001
  • It is well-known that the micro fabrication technology of micro parts are the high energy beam or silicon-based micro machining method such as LIGA Process, Laser machining, photolithography and etching technology. But, for fabricating complex 3-D structure it is better to use mechanical machining. This machining method by the mechanical machine tool with nanometer accuracy is getting attention in some field-especially micro optics machining such as grating, holographic lens, micro lens array, fresnel lens, encoder disk etc.. In this study, we survey the micro fabrication by mechanical cutting method and set up the mechanical micro machining system. And we carried out micro cutting experiments for micro parts with v-shape groove.

  • PDF

Study on Micro Machining for Micro Shafts using micro endmill (미세 엔드밀에 의한 마이크로 샤프트 가공기술 연구)

  • Je, T.J.;Lee, E.S.;Lee, J.C.;Choi, H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.181-184
    • /
    • 2002
  • In these day, fabrication technologies for micro parts become more important with the increase of interest on microsystem and developed through the various approaches in the whole world. Among these technologies; micro mechanical machining is one of the most effective methods for the fabrication of micro parts. In this study, we fabricated micro shafts using micro endmill and micromachining system and measured the cutting force at the process. Also, Based on the data, we simulated the deformation of micro shafts due to the cutting force. Through the simulation results, it was verified that the cutting force at the process is enough to cause dimensional error at the micro shafts.

  • PDF

Ultra Precision Polishing of Micro Die and Mold Parts using Magnetic-assisted Machining (자기연마법을 응용한 미세금형부품의 초정밀 연마)

  • 안병운;김욱배;박성준;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1832-1835
    • /
    • 2003
  • This paper suggests the selective ultra precision polishing techniques for micro die and mold parts using magnetic-assisted machining. Fabrication of magnetic abrasive particle and their polishing performance are key technology at ultra precision polishing process of micro parts. Conventional magnetic abrasives have disadvantages. which are missing of abrasive particle and inequality between magnetic particle and abrasive particle. So, bonded magnetic abrasive particles are fabricated by several method. For example, plasma melting and direct bonding. Ferrite and carbonyl iron powder are used as magnetic particle where silicon carbide and Al$_2$O$_3$ are abrasive particle. Developed particles are analyzed using measurement device such as SEM. Possibility of magnetic abrasive and polishing performance of this magnetic abrasive particles also have been investigated. After polishing, surface roughness of workpiece is reduced from 2.927 $\mu\textrm{m}$ Rmax to 0.453 $\mu\textrm{m}$ Rmax.

  • PDF