• Title/Summary/Keyword: micro parts

Search Result 661, Processing Time 0.032 seconds

Investigation of Micro Cutting Characteristics for Tungsten-Carbide Green Part (초경 그린파트 마이크로 절삭가공 특성 분석)

  • Kim, G.H.;Jung, W.C.;Yoon, G.S.;Heo, Y.M.;Kwon, Y.S.;Cho, M.W.
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.191-196
    • /
    • 2010
  • Tungsten-carbide as typical difficult-to-cut material has excellent mechanical properties such as high thermal resistivity, mechanical strength and chemical durability. However, it is next to impossible for tungsten-carbide to be fabricated the needed parts by cutting process. In this study, for establishing the micro fabrication method of tungsten-carbide for micro injection or compression molding core, the investigation on micro cutting characteristics of tungsten-carbide green part which is made by powder injection molding process and easy to cut relatively was performed. For this, micro endmilling experiments of tungsten-carbide green part were performed according to various cutting conditions. Finally, the wear trend of micro endmill and the appearance of micro rib according to feed-rate and cutting depth per step were analyzed through SEM images of micro cutting feature and microscope images of micro tools.

A study on the micro wire joining using single mode fiber laser (Single mode fiber laser를 이용한 micro wire joining에 관한 연구)

  • Park K.W.;Na S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.663-664
    • /
    • 2006
  • In the electronic, medical, aerospace and automobile industries, many products and parts are manufactured by joining. Recently, as these get smaller, micro joining is becoming more and more important. In this study, micro wire-to-micro wire parallel joining was performed using single mode fiber laser. Maximum power of the fiber laser is 100 W. The CCD(Charge- Coupled Device, CCD) camera to observe the specimen was made up. The objective was applied to micro joining system to make a small spot size of laser beam. In order to control the target position, micro-multi-axis-stage was set up. This paper presents results for the single mode fiber laser joining of micro wires.

  • PDF

Micro Forming of Metallic Micro-parts and Surface Patterns by Employing Vibrational Load (진동 하중을 이용한 마이크로 부품 및 표면 패턴 성형 기술)

  • Na, Y.S.;Lee, J.H.;Lee, W.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.64-67
    • /
    • 2009
  • Vibrational micro-forming of pyramidal shape patterns was conducted for an Al superplastic alloy, Al 5083 and a Zr-based bulk metallic glass, $Zr_{62}Cu_{17}Ni_{13}Al_8$. A vibrational micro-forming system was specially designed for generating vibrational load by combining a PZT actuator with a signal generator. Single crystal Si micro dies with wet-etched pyramidal patterns were used as master dies for vibrational micro-forming. The micro-formed pattern height was increasing with increasing the frequency of the vibrational load. In particular, the vibrationally-microformed pattern height was similar or even higher than the statically-microformed pattern height when the load frequency exceeded about 125 kHz. It was also observed that the crystal grains affect the surface quality of the microformed pattern and the distribution of the pattern height in the die cavity array.

  • PDF

Tungsten Wire Micro Electrochemical Machining with Ultra Short Pulses (텅스텐 와이어 초단 펄스 미세 전해가공)

  • Shin, Hong-Shik;Kim, Bo-Hyun;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.105-112
    • /
    • 2007
  • Tungsten wire micro electrochemical machining (W-wire micro ECM) with ultra-short pulses enables precise micro machining of metal. In wire micro ECM, platinum wire has been used because it is electrochemically stable. However, the micro metal wire with low strength is easily deformed by hydrogen bubbles which are generated during the machining. The wire deformation decreases the machining accuracy. To reduce the influence of hydrogen bubbles, in this paper, the use of tungsten wire was investigated. To improve machining accuracy, suitable pulse conditions which affect generation of bubbles were also investigated. The tungsten wire micro ECM can be applied to the fabrication of various shapes. Using this method, various micro-parts and shapes were fabricated.

Design of piezoelectric micro-machined ultrasonic transducer for wideband ultasonic radiation in air (공기 중 광대역 초음파 방사용 압전 박막 기반 초소형 초음파 트랜스듀서의 설계)

  • Ahn, Hongmin;Jin, JaeHyeok;Moon, Wonkyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.2
    • /
    • pp.87-97
    • /
    • 2020
  • In this paper, the design of piezoelectric Micro-machined Ultrasonic Transducer (pMUT) for wideband ultrasonic radiation in air was investigated. One of the methods to achieve wide frequency bandwidth in single device is modeling the transducer to multi-resonance system. The new pMUT was designed as a multi-resonance system with the addition of a suitable acoustic structure to the front and back of a thin film structure. A new pMUT consisting of thin film parts, radiation parts, and packaging parts is designed with a Lumped Parameter Model (L.P.M). Finally, it was validated as a Finite Element Method (FEM) simulation. The final designed pMUT achieved a frequency band of 102 kHz ~ 132 kHz (-3 dB).

A Precision Micro-Positioning System by Using Hinge Mechanism

  • Choi, Hyeun-Seok;Lee, Hak-Joon;Han, Chang-Soo;Kim, Seung-Soo;Kim, Eung-Zu;Choi, Tae-Hoon;Na, Kyoung-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1344-1348
    • /
    • 2003
  • A precision micro-positioning system with a high displacement resolution and wide motion range has been required for industrialized applications in variety fields. This paper discusses the design of a precision micro-rotation stage with flexure hinges. Proposed system is applied to grinding machine for micro parts. Rotational motion is generated with this system. For this systems having a full rotation motion with high precision, a dual servo system with a coarse stage and a fine stage is proposed.

  • PDF

Effect of Machining Conditions on machining gap in Micro Electrochemical Drilling (미세 전해 구멍 가공에서의 가긍 조건에 따른 가공 간극 변화 특성)

  • Kim, Bo-Hyun;Park, Byung-Jin;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.163-169
    • /
    • 2005
  • Micro hole is ode of basic elements for micro device or micro parts. Micro electrochemical machining (ECM) can be applied to the machining of micro holes less than 50 ${\mu}m$ in diameter, which it is not easy to apply other techniques to. For the machining of passivating metals such as stainless steel, machining conditions should be chosen carefully to prevent a passive layer. The machining conditions also affect the machining resolution, In this paper, machining characteristics of micro ECM were investigated according to machining conditions such as electrolyte concentration and pulse conditions. From the investigation, optimal machining conditions were suggested for micro ECM of stainless steel.

Wire-tension Control System using Photo-interrupter Sensor and Micro-electrode Fabrication (광단속센서를 이용한 와이어장력 제어장치 및 마이크로전극 제조)

  • Kang, Myung Chang;Lee, Chang Hoon;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.28-35
    • /
    • 2013
  • Micro electrical discharge machining (EDM) as a non-contact machining process is very effective for micromachining with a thin electrode because of its low machining reaction force. The micro-electrode machining device has the advantage of maintaining high precision through the whole processes and uses a feeding wire in the thin electrode tool manufacturing process. This study describes the design and evaluation of a micro-electrode machining device using optical photo-interrupter. The electrode was fabricated by reverse electrical discharge machining. The performance of designed system was evaluated to measure tension force according to feed speed of wire. This system for micro electrode fabrication proves the feasibility in the micro-EDM process of the micro holes and parts for industrial applications.

A Study on the Characteristics of Micro Deep Hole Machining in Micro Drilling Machine (마이크로 드릴링 M/C에 의한 미세구멍가공특성에 관한 연구)

  • 민승기;이동주;이응숙;강재훈;김동우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.275-280
    • /
    • 2001
  • Recently, the trends of industrial products grow more miniaturization, variety and mass production. Micro drilling which take high precision in cutting work is requested more micro hole and high speed working. Especially, Micro deep hole drilling is becoming more important in a wide spectrum of precision production industries, ranging from the production of automotive fuel injection nozzle, watch and camera parts, medical needles, and thick multi-layered Printed Circuit Boards(PCB) that are demanded for very high density electric circuitry. This paper shows the tool monitoring results of micro drill with tool dynamometer. And additionally, microscope with built-in monitor inspection show the relationship between burr in workpiece and chip form of micro drill machining.

  • PDF

Rapid Manufacturing of 3D Micro Products by UV Laser Ablation and Phase Change Filling (UV 레이저 어블레이션과 상변화 충진을 이용한 3차원 마이크로 부품의 쾌속 제작)

  • 신보성;김재구;장원석;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.26-29
    • /
    • 2003
  • UV laser micromachining are generally used to create microstructures for micro product through a sequence of lithography-based photopatterning steps. However, the micromachining process is not suitable for the rapid realization of complex microscale 3D product because it depends on worker experiences, excessive cost and time to make many masks. In this paper, the more effective micro rapid manufacturing process, which is developed upon the base of laser micromachining. is proposed to fabricate micro products directly using UV laser ablation and phase change filling. The filling process is useful to hold the micro product during the next ablation step. The proposed micro rapid manufacturing process is also proven experimentally that enables to fabricate the 3D microscale products of UV sensitive polymer from 3D CAD data to functional micro parts.

  • PDF