• Title/Summary/Keyword: micro pH electrode

Search Result 12, Processing Time 0.03 seconds

Development of a Micro pH-ISFET Probe for in vivo Measurements of the Ion Concentration in Blood (생체내의 혈중이온농도 예측을 위한 마이크로 pH-ISFET프로브의 개발)

  • Sohn, Byung-Ki;Lee, Jong Hyun;Lee, Kwang Man
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.1
    • /
    • pp.83-90
    • /
    • 1986
  • A micro pH-ISFET probe, which can be applied to the in vivo measurements of the hydrogen ion concentration in blood, has been developed, and a measuring system equiped with this probe also developed. The pH-ISFET has been fatricated by employing the techniques of integrated circuit fabrication. Two kinds of micro electrode formed around the sensing gate during the wafer process, and the other is a capillary type of Ag/AfCl/sat. KCI reduced in size. This capillary electrode has shown its good performance characteristics so far in the application with ISFET as well as a commercial one. In order to form a micro pH-ISFET probe, this pH-ISFET and well as a commercial one. In order to form a micro pH-ISFET probe, this pH-ISFET and the capillary electrode were built together into a needle tip having 1 mm inner diameter. The chip size of a twin pH-ISFET is 0.8 mmx1.4 mm, the material of the sensing gate membrane is Si3N4, and the sensitivity of the developed probe is about 52mV/pH.

  • PDF

Automatic Titration Using Micro pH Electrode in Volatile Basic Nitrogen Analysis (마이크로 pH전극을 이용한 휘발성염기질소의 자동적정)

  • Lee, Hyeong-Choon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.4
    • /
    • pp.507-509
    • /
    • 2006
  • An automatic titration was performed by a home-made automatic control system adopting a micro pH electrode as its sensing part in microdiffusion-based volatile basic nitrogen (VBN) analysis. The micro electrode was considered to be adequate for automatic VBN analysis because of its small sensor size, low immersion depth and unbreakable body. Six pork samples in different degree of freshness were analyzed both manually and automatically. The data from automatic titration were not significantly different from those taken by manual titration even at 15% significance level. The correlation coefficient was 1.000.

Surface Renewable Hydrogen Ion-Selective Polymeric Composite Electrode Containing Iridium Oxide

  • Quan, Hongmei;Kim, Won;Chung, Koo-Chun;Park, Jong-Man
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.10
    • /
    • pp.1565-1568
    • /
    • 2005
  • A surface renewable pH electrode was prepared by utilizing composite electrode technique. Iridium oxide micro-fine particles was prepared by hydrolysis of $(NH_4)_2IrCl_6$ at elevated temperature. The iridium oxide particles were mixed with well-dispersed carbon black and then filtered. The mixture was suspended in DMF containing PVC as a binder. The mixture was precipitated rapidly by adding large amount of water. The precipitate was ground and pressure-molded to iridium oxide composite electrode material. The electrode showed linear response between pH 1-13 with 50 to 60 mV/pH slope. The electrode maintained the pH response without appreciable slope drift for 170 days if stored in deionized water. The electrode surface can be renewed reproducibly by simple grinding process whenever contaminated or deactivated.

Determination of Electrode Potential in Micro Electrochemical Machining of Nickel (니켈의 미세 전해 가공 시 전극 전위의 선정)

  • Nam H.S.;Park B.J.;Kim B.H.;Chu C.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.585-588
    • /
    • 2005
  • The dissolution characteristic of metal shows the different tendency according to the applied electrical potential, the kind of electrolyte and pH value, etc. In the micro electrochemical machining (ECM), unfavorable oxide/passive layer formation and overall corrosion of electrodes must be prevented. The anodic polarization curve of nickel has distinct three dissolution regions, i.e. two active regions and the transpassive dissolution region. In this paper, the stable electrode potentials of workpiece and tool were determined in sulfuric acid and hydrochloric acid solution, respectively. In each solution, different machining property was shown and possible electrochemical reactions were discussed. On the basis of this experiment, the methodology to obtain the proper electrode potential was suggested.

  • PDF

Fabricationof small size catridge for electrolyte measurement including flow-channel and microsensors (Flow-channel과 microsensor를 내장한 전해질 측정용 소형 카트리지 제작)

  • 이영철;조병욱;김창수;고광락;손병기
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.4
    • /
    • pp.78-83
    • /
    • 1998
  • A small size cartrideg for FET type electrolyte sensor is designed and faricated with much simplified process by using micromachining tenchiques such as silicon etching andglass bonding. Size of the whole cartideg is 2.4cm*2.5cm, and the dead volume of a micro flow-channel in the cartrideg is only 8.5.mu.l. The photosensitive polymer(THB 30) is used to define a micropool and to encapsulate the sensor surface for standardizationof electrolyte sensors. To miniaturize micro flow-channel conventional reference electrode(Ag/AgCl) a differential amplification is introduced using REFET and quasi reference electrode. Refet was fabricated using photosensitive polymer(OMR 83). The fabricated cartridge with built-in pH-ISFET showed good operational characteristics such as linearity and high sensitivity (55.4mV/pH) in a wide pH range(pH2-pH12).

  • PDF

Development of Micro Wired pH Electrode for Real-Time Monitoring for Gastroesophageal Reflux (위식도 역류 실시간 모니터링 마이크로 와이어 pH 전극 개발)

  • Kim, Eung-Bo;Lee, Kyu-Jin;So, Sang-Kyun;Joung, Yeun-Ho;Park, Jung Ho;Kim, Nam Hee
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.277-284
    • /
    • 2017
  • This paper presents an implantable pH measurement electrode for wireless gastroesophageal reflux measurement. Usually, gastroesophageal reflux is diagnosed by a catheter-type wire connection between the esophagus and the diagnostic device which brings many side effects such as restriction of daily living, pain, and discomfort in the nasal cavity and pharynx of patients. In order to solve these issues, researchers have been studied a wireless measurement method and a micro-sized pH electrode for human body insertion is necessary. Commercial glass packaged pH meter is formed by a sensing and a reference electrodes in a KCl solution. However, if the glass meter is inserted into the human body, there are risks of leakage of the solution, breakage of the glass package, injury of the body elements. Therefore, the solution should be solidified on the micro-sized noble metal wire which has a characteristic of biocompatible. After solidified wire fabrication, the designed meter was tested for feasibility of measurement and the result was well agreed with pH values of commercial pH meter. Potentials in pH 1 to 12 solution was measured to obtain the sensitivity of the sensor with linearity. And we have designed a simulation of gastroesophageal reflux with symptom frequency, interval, and duration time in pH 2 solution. The proposed sensor has capable to get the same potential for 24 measurements in 3 days, and it has sensed same pH values of 2 for one hour with every 10 minutes. Furthermore, the sensor was survived for 48 hours with reasonable potentials in the acid solution.

Fabrication of Disposable pH Sensor with Micro-volume Type (Micro-volume형 일회용 pH 센서 제작)

  • Jung, Ho;Kim, Heung-Rak;Kim, Young-Duk;Jung, Woo-Chul;Kim, Dong-Su;Nam, Hyo-Duk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.950-952
    • /
    • 2003
  • This paper have been studied fabrication and characteristics of disposable pH sensor using MEMS technology. The sensor has two open-well structure, the container for the internal electrolyte and electrode were formed by anisotropically etching a silicon substrate. unlike currently used KCI saturated solution, the structure was introduced hydrogel which take an advantage of miniaturization, bulk product, a low price. PU and CA/TP used to measurement ion detection, one is reference membrane and the other is pH. fabricated sensor is encapsulated entirely with epoxy, finally sensor was estimated various ion sorts and pH ranges.

  • PDF

Sub-Micro Molar Monitoring of La3+ by a Novel Lanthanum PVC-Based Membrane Sensor Based on 3-Hydroxy-N'-(pyridin-2-ylmethylene)-2-naphthohydrazide

  • Ganjali, Mohammad Reza;Norouzi, Parviz;Yousefian, Nasrin;Faridbod, Farnoush;Adib, Mehdi
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1581-1586
    • /
    • 2006
  • A La (III) ion-selective membrane sensor has been fabricated from poly vinyl chloride (PVC) matrix membrane, containing 3-hydroxy-N'-(pyridin-2-ylmethylene)-2-naphthohydrazide (HPMN) as a neutral carrier, potassium tetrakis (p-chlorophenyl) borate (KTpClPB) as an anionic excluder and ortho-nitrophenyloctyl ether (NPOE) as a plasticizing solvent mediator. The effects of membrane composition and pH as well as the influence of the anionic additive on the response properties were investigated. The sensor with 30% PVC, 62% solvent mediator, 6% ionophore and 2% anionic additive, shows the best potentiometric response characteristics. It displays a Nernstian behavior (19.2 mV per decade) across the range of $1.0{\times}10^{-2}-1.0{\times}10^{-7}$ M. The detection limit of the electrode is $7.0{\times}10^{-8}$ M ($\sim$10 ng/mL) and the response time is 15 s from $1.0{\times}10^{-2}$ up to $1.0{\times}10^{-4} $M and 30 s in the range of $1.0 {\times}10^{-5}-1.0{\times}10^{-7}$ M. The sensor can be used in the pH values of 3.0-9.0 for about seven weeks. The membrane sensor was used as an indicator electrode in the potentiometric titration of lanthanum ions with EDTA. It was successfully applied to the lanthanum determination in some mouth wash preparations.

Quality Determination of Shrimp(Penaeus japonicus) during Iced and Frozen Storage (보리새우(Penaeus japonicus)의 얼음과 냉동저장시 품질변화 측정)

  • Lee, Young-Chun;Um, Young-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.520-524
    • /
    • 1995
  • ATP related compounds, ammonia, VBN, pH and sensory quality of shrimps were determined to evaluate quality changes during iced and frozen storage. ATP related compounds were determined by HPLC, ammonia by ammonia ion specific electrode, VBN by micro-diffusion method, pH by pH meter, sensory quality by multiple comparison test with 30 panelists. K value of ice stored shrimps gradually increased to 20% for 8 days, and then increased more rapidly, whereas that of frozen stored shrimps increased slowly for 7 months. Ammonia contents in ice stored shrimps increased slowly for 6 days and then rapidly after 8 days storage, whereas that in frozen stored shrimps increased slowly for 8 months. VBN contents in ice stored shrimps increased slowly for 10 days and then rapidly after 12 days. VBN contents in frozen stored shrimps slightly increased for 6 months. Sensory scores of taste and color of shrimps marked lowered values after 6 days storage in ice, and after 6 and 7 months frozen storage, respectively. Sensory flavor scores of stored shrimps had significant correlations with K value, ammonia, pH and VBN. These results indicated that ammonia contents in stored shrimps, rapidly determined by an ammonia electrode, could be used as a quality index of shrimps.

  • PDF

Microfabrication of the ISFET Cartridge by empolying Nozzle system (노즐의 원리를 도입한 ISFET 소형 카트리지 제작)

  • Kim, Hyun-Soo;Lee, Young-Chul;Kim, Young-Jin;Cho, Byung-Woog;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.320-326
    • /
    • 1999
  • A small cartridge, with a nozzle system for washing off the dirt from the surfaces of sensing gates, was fabricated. The proposed nozzle structure was designed for cartridge by using the simulation tool of fluid (CFD-ACE). Whole size of the fabricated cartridge by using micromachining techniques is about $2.6\;cm{\times}1.5\;cm$, the size of the washing nozzle is $0.2\;mm{\times}0.6\;mm$ and its dead volume is only about $20\;{\mu}l$. A micro-reference electrode was achieved by employing a differential system with ISFETs/QRE (quasi-reference electrode)/REFET (reference field-effect transistor). Metal electrodes was deposited at both ends of blowing channel were used to check the presence of bubble in the microchannel. The pH-ISFET was inserted into the fabricated cartridge and the washing effect of the nozzle system in cartridge was invested.

  • PDF