• Title/Summary/Keyword: micro machining

Search Result 851, Processing Time 0.023 seconds

Fabrication of Micro Structure Using Electro Discharge Deposition (Electro Discharge Deposition (EDD)을 이용한 미세 구조물 제작)

  • 오석훈;민병권;박성준;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1865-1868
    • /
    • 2003
  • This paper provides a new method for hybrid machining, particularly suited to micro fabrication applications such as micro point, micro line, micro structure, micro partition and so on. Developed micro fabrication process by electrical discharge machining (EDM) and electrical discharge deposition (EDD) with metal powder (Ti, Fe) has been studied to build TiC or FeC structure. Titanium powder or iron powder is supplied from working fluid (kerosene or de-ionized water with powder) and adheres on a workpiece by the heat and electric power caused by the electrical discharge. The use of a tool electrode is expected to keep powder concentration high in the gap between a workpiece and a tool electrode and to accrete powder material on the workpiece. The deposition is tried under various electrical conditions (workpiece. tool electrode, working fluid, discharge current, voltage and powder etc.). On the other hand. using electrical discharge machining (EDM) with the same tool electrode, it can be used as a removal process (cutting) by electro erosion at the same time. Therefore. this new method can do a hybrid machining to build up and down a structure with the workpiece.

  • PDF

Development of Diagnosis System for Intelligent High-Speed Micro-Machining and Evaluation of Micro-Machining Characteristics (고속.지능형 마이크로머시닝을 위한 진단시스템 및 특성평가)

  • 김흥배;이우영;최성주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.993-998
    • /
    • 1997
  • The advanced technology of micro-machining is starting to penetrate our lives. This technology, with which it is possible to make micro-structures by means of processing on the order of nm (micrometer = 1/1,000 mm) or less, is realizing machines that were only part of our wildest imagination. However, the fact is that many issues remain in the quest for a variety of applications. With the advent of computing technologies, information technologies, and telecommunications technologies, we foresee the need for new approaches in design, process, and the use of materials, technologies, and people in a globalized manufacturing enterprise. A new thinking paradigm is needed to focus on quality of service on the products we design and manufacture. Factories in different regions need to be co-ordinated through use of the state-of-the-art information on productivity, diagnostics, and service evaluation of manufacturing systems could be shared among different locations and partners. In this research, We develope the internet based Diagnosis system for micro machining and evaluate its characteristics by using mechatronic sensor like Dynamometer, acoustic emission, Acceleration sensor, micro phone, vision, infra-red thermometer.

  • PDF

Machining Characteristics of Micro Structure using Single-Crystal Diamond Tool on Cu-plated Mold (단결정 다이아몬드공구를 사용한 Cu 도금된 몰드의 미세 구조체 가공특성)

  • Kim, Chang-Eui;Jeon, Eun-chae;Je, Tae-Jin;Kang, Myung Chang
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.169-174
    • /
    • 2015
  • The optical film for light luminance improvement of BLU that is used in LCD/LED and retro-reflective film is used as luminous sign consist of square and triangular pyramid structure pattern based on V-shape micro prism pattern. In this study, we analyzed machining characteristics of Cu-plated flat mold by shaping with diamond tool. First, cutting conditions were optimizing as V-groove machining for the experiment of micro prism structure mold machining with prism pattern shape, cutting force and roughness. Second, the micro prism structure such as square and triangular pyramid pattern were machined by cross machining method with optimizing cutting conditions. Burr and chip shape were discussed with material properties and machining method.

A study on the Micro Surface Electrochemical Machining for Aluminum Alloy (알루미늄에 대한 미세 표면 전해가공에 관한 연구)

  • 백승엽;이은상;원찬희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.214-217
    • /
    • 2002
  • Micro Surface Electrochemical Machining has traditionally been used in highly specialized fields such as those of the aerospace and defense industries. It is now increasingly being applied in other industries where parts with difficult-to-cut material, complex geometry and tribology such as compute. hard disk drive(HDD) are required. Pulse Electrochemical Micro-machining provides an economical and effective method for machining high strength, high tension, heat-resistant materials into complex shapes such as turbine blades of titanium and aluminum alloys. Usually aluminum alloys are used bearings to hard disk drive in computer. In order to apply aluminum alloys to bearing used in hard disk drive, this paper presents the characteristics of Micro Surface Electrochemical machining for aluminum alloy.

  • PDF

A Study on the Machining Characteristics for Micro Barrier Ribs by using Micro Endmilling (마이크로 엔드밀에 의한 미세격벽가공의 가공특성에 관한 연구)

  • 민승기;이선우;이동주;이응숙;제태진;최두선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.26-31
    • /
    • 2001
  • Recently, miniaturization and mass production are the main trends in manufacturing fields. Therefore, ultraprecision machining and MEMS technology have been taken more and more important position in machining of microparts. Micro endmilling is one of the prominent technology that has wide spectrum of application field ranging from macro parts to micro products, such as PDP and IT components, in precision products manufacturing. However, the deburring is significant problem in making smooth and precise parts in micro endmilling. This paper shows removal characteristics of burr generated by micro endmilling process. Additionally, it is necessary to understand the formation mechanism of burr of micro barrier ribs to find proper deburring method.

  • PDF

The Cutting Process Monitoring of Micro Machine using Multi Sensor (멀티센서를 이용한 마이크로 절삭 공정 모니터링)

  • Shin, B.C.;Ha, S.J.;Kang, M.H.;Heo, Y.M.;Yoon, G.S.;Cho, M.W.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.144-149
    • /
    • 2009
  • Recently, the monitoring technology of machining process is very important to improve productivity and quality in manufacturing filed. Such monitoring technology has been performed to measurement using vibration signal, acoustic emission signal and tool dynamometer. However, micro machining is limited small-scale parts machining because micro tool is very small and weakness to generate signal in micro machining process. Therefore, this study has efficient sensing technology for real monitoring system in micro machine that is proposed to supplement a disadvantage of single-sensor by multi sensor. From experimental result, it was evaluated tool wear and cutting situation according to repetitive slot cutting condition and changing cutting condition, and it was performed monitoring spindle rpm and condition according to compare acceleration signal with current signal.

Localized Electro-chemical Micro Drilling Using Ultra Short Pulses (초단펄스 전해 국부화를 이용한 미세구멍 가공)

  • 안세현;류시형;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.213-220
    • /
    • 2003
  • By the localization of electro-chemical dissolution region, we succeeded in a few micrometer size hole drilling on stainless steel with the radial machining gap of about 1 ${\mu}{\textrm}{m}$. Tens of nanosecond duration voltage pulses were applied between WC micro-shaft and stainless steel in the 0.1 M $H_2SO_4$ solution. Pt balance electrode was used to drill the high aspect ratio micro-hole without generation of Cr oxide layer on the machined surface. The effects of applied voltage, pulse duration, and pulse period on localization distance were investigated according to machining time. We suggested the taper reduction technique especially brought up on blind-hole machining. High quality micro-holes with 8 ${\mu}m$ diameter with 20 ${\mu}m$ depth and 12 ${\mu}m$ diameter with 100 ${\mu}m$ depth were drilled on 304 stainless steel foil. The various hole shapes were also produced including stepped holes and taper free holes.

Mask Modeling of a 3D Non-planar Parent Material for Micro-abrasive Jet Machining (미세입자 분사가공을 위한 3 차원 임의형상 모재용 마스크 모델링)

  • Kim, Ho-Chan;Lee, In-Hwan;Ko, Tae-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.91-97
    • /
    • 2010
  • Micro-abrasive Jet Machining is one of the new technology which enables micro-scale machining on the surface of high brittle materials. In this technology it is very important to fabricate a mask that prevents excessive abrasives not to machine un-intend surface. Our previous work introduced the micro-stereolithography technology for the mask fabrication. And is good to not only planar material but also for non-planar materials. But the technology requires a 3 dimensional mask CAD model which is perfectly matched with the surface topology of parent material as an input. Therefore there is strong need to develop an automated modeling technology which produce adequate 3D mask CAD model in fast and simple way. This paper introduces a fast and simple mask modeling algorithm which represents geometry of models in voxel. Input of the modeling system is 2D pattern image, 3D CAD model of parent material and machining parameters for Micro-abrasive Jet Machining. And the output is CAD model of 3D mask which reflects machining parameters and geometry of the parent material. Finally the suggested algorithm is implemented as software and verified by some test cases.

Fume Particle Dispersion in Laser Micro-Hole Machining with Oblique Stagnation Flow Conditions (경사 정체점 유동이 적용된 미세 홀 레이저 가공 공정의 흄 오염입자 산포특성 연구)

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.77-82
    • /
    • 2021
  • This numerical study focuses on the analysis of fume particle dispersion characteristics over the surface of target workpiece in laser micro-hole machining process. The effects of oblique stagnation flow over fume generating machining point are examined by carrying out a series of three-dimensional random particle simulations along with probabilistic particle generation model and particle drag correlation of low Reynolds number. Present computational model of fume particle dispersion is found to be capable of assessing and quantifying the fume particle contamination in precision hole machining which may influenced by different types of air flow patterns and their flow intensity. The particle size dependence on dispersion distance of fume particles from laser machining point is significant and the effects of increasing flow oblique angle are shown quite differently when slot blowing or slot suction flows are applied in micro-hole machining.

Fabrication of PCD Micro Tool and its Hybrid Micro Machining (다결정 다이아몬드를 이용한 미세 공구 제작과 이를 이용한 미세 복합 가공)

  • Doan, Cao Xuan;Kim, Bo-Hyun;Chung, Do-Kwan;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.694-700
    • /
    • 2011
  • Since polycrystalline diamond (PCD) has high hardness like diamond, it has been used as tool material for lathe and milling of non-ferrite material. A micro tool fabricated from PCD material can be used for micro machining of hard material such as tungsten carbide, glass, and ceramics. In this paper, micro PCD tools were fabricated by micro EDM (electrical discharge machining) and used for micro grinding of glass. Craters generated on the tool surface by EDM spark work as like grits in grinding process. The effects of tool shapes, tool roughness and PCD grain size were investigated. Also studied was a hybrid process combining electrochemical discharge machining (ECDM) and micro grinding for micro-structuring of glass.