• Title/Summary/Keyword: micro fracture

Search Result 438, Processing Time 0.026 seconds

Prediction of Bone Aging by Adapting Image J (Image J를 활용한 뼈의 노화도 예측법)

  • Jung, Hong Moon;Won, Do Yeon;Jung, Jae Eun
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.2
    • /
    • pp.63-67
    • /
    • 2012
  • Calcium density in human bones decreases as people are getting older due to the interior or exterior environmental factors. Bone aging forms osteoporosis. And this can bring out various spine fractures which develops a complications. Thus the prediction of seniliy is one of the important factors in spine diseases. Once spine aged, diverse fractures occur such as compression fracture and micro fracture. Side images of the spine by the digital radiography (DR) were prepared, and pixel arbitrary unit with Image J was measured from one spot in the lumbar bone part. By calculating pixel arbitrary unit of the simple contrast, it was obtained that the value of pixel arbitrary unit decreased as seniliy of bones increased. By simply applying Image J to the seniliy of patient's spine, the seniliy of bones predicts the level of danger with only digital radiography(2D) image. consequently we show that Image J value of pixel arbitrary unit index for predicts the level of precaution of osteoporosis patient.

  • PDF

Fiber blending Ratio Effect on Tensile Properties of Hybrid Fiber Reinforced Cement-based Composites under High Strain Rate (고변형속도 조건에서 섬유 혼합비가 하이브리드 섬유보강 시멘트복합체의 인장특성에 미치는 영향)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Bo-Kyeong;Lee, Sang-Kyu;Kim, Gyeong-Tae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.147-148
    • /
    • 2017
  • In this study, the tensile properties of mono and hybrid fiber reinforced cement-based composite according to fiber blending ratio under the high strain rate was evaluated. Experimental results, the HSF1.5PVA0.5 shown the highest tensile strength because the PVA fiber suppressed the micro cracks in the matrix around the hooked steel fiber and improved the pull-out resistance of hooked steel fiber. Thus, DIF of strain capacity and fracture toughness of HSF1.5PVA were greatly improved. Also, the fracture toughness was greatly improved because the tensile stress was slowly decreased after the peak stress by improvement of the pull-out resistance of hooked steel fiber at strain rate 101/s.

  • PDF

The Investigation for Detection of Crack Initiation in the CFRP Laminates under Flexural Loading Test (굽힘하중에서 탄소섬유 복합적층재의 균열 발생 측정에 관한 연구)

  • Lee, Jun Hyuk;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.5
    • /
    • pp.7-13
    • /
    • 2022
  • Digital image correlation (DIC) is a method used to measure the displacement and strain of structures. It involves transforming and analyzing images before and after deformation using correlation coefficients from irregular light and shade on the surface of structures. In the present study, a microspeckle pattern was applied to the surface of a specimen to identify initial cracking. The test specimen constituted CFRP composites laminated on a curved Al liner The specimen was manufactured by stacking 100 ply of CFRP prepregs in the 0° and 90° directions in a three-point bending test. The equivalent strain was evaluated through DIC analysis after monitoring deformation using a CCD camera. Fracture shape was observed using a microscope. The equivalent strain contour distribution was checked until the maximum load fracture occurred at the center of the test specimen. Variations in the strain indicated the initial occurrence and progression of microcracks. These results can be used to improve the accuracy of detecting micro crack initiation and to achieve structural stability.

Residual Stress on Concentric Laminated Fibrous Al2O3-ZrO2 Composites on Prolonged High Temperature Exposure

  • Sarkar, Swapan Kumar;Lee, Byong Taek
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.531-536
    • /
    • 2013
  • This paper investigates the effect of prolonged high temperature exposure on concentric laminated $Al_2O_3-ZrO_2$ composites. An ultrafine scale microstructure with a cellular 7 layer concentric lamination with unidirectional alignment was fabricated by a multi-pass extrusion method. Each laminate in the microstructure was $2-3{\mu}m$ thick. An alternate lamina was composed of 75%$Al_2O_3$-(25%m-$ZrO_2$) and t-$ZrO_2$ ceramics. The composite was sintered at $1500^{\circ}C$ and subjected to $1450^{\circ}C$ temperature for 24 hours to 72 hours. We investigated the effect of long time high temperature exposure on the generation of residual stress and grain growth and their effect on the overall stability of the composites. The residual stress development and its subsequent effect on the microstructure with the edge cracking behavior mechanism were investigated. The residual stress in the concentric laminated microstructure causes extensive micro cracks in the t-$ZrO_2$ layer, despite the very thin laminate thickness. The material properties like Vickers hardness and fracture toughness were measured and evaluated along with the microstructure of the composites with prolonged high temperature exposure.

A New Method for Measuring Residual Stress in Micro and Nano Films (마이크로 및 나노 박막의 잔류응력을 측정하기위한 새로운 방법)

  • Kang, Ki-Ju;Evans, Anthony G.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.438-444
    • /
    • 2003
  • A new method to measure residual stress in micron and nano scale films is described. In the theory it is based on Linear Elastic Fracture Mechanics. And in the techniques it depends on the combined capability of the focused ion beam (FIB) imaging system and of high-resolution digital image correlation (DIC) software. The method can be used for any film material (whether amorphous or crystalline) without thinning the substrate. In the method, a region of the film surface is highlighted and scanning electron images of that region taken before and after a long slot, depth a, is introduced using the FIB. The DIC software evaluates the displacement of the surface normal to the slot due to the stress relaxation by using features on the film surface. To minimize the influence of signal noise and rigid body movement, not a few, but all of the measure displacements are used for determining the real residual stress. The accuracy of the method has been assessed by performing measurements on a nano film of diamond like carbon (DLC) on glass substrate and on micro film of aluminum oxide thermally grown on Fecrally substrate. It is shown that the new method determines the residual stress ${\sigma}_R=-1.73$ GPa for DLC and ${\sigma}_R=-5.45$ GPa for the aluminum oxide, which agree quite well with ones measured independently.

  • PDF

Initiation and Propagation Behaviors of Micro-Surface-Fatigue Cracks under In-Plane Tension Fatigue Tests (引張 軸荷重 疲勞 에 의한 微小表面 균열 의 發생 . 成長擧動)

  • 서창민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 1985
  • In-plane tension fatigue tests (R = 0.05) were carried out to investigate the initiation and propagation behaviors of micro-surface-fatigue cracks on smooth surfaces of a mild steel. Also, the investigations of saturated cyclic strain which can be obtained by the fatigue tests have been made via the cyclic strain intensity factor, .DELTA. $K_{\epsilon}$/, for the purpose of unifying two approaches of the study of fatigue; the one approach is based on the fracture mechanics concept and the other on lowcycle fatigue concept. Some of the results are as follows; The growth rate, d(2a)/dN, of small cracks cannot be represented by one straight line as a function of .DELTA.K for various of the nominal stress range, .DELTA..sigma., and is higher than that of a larger through crack. The rearrangement of the d(2a)/dN by .DELTA..epsilon..root..pi.s( = .DELTA. $K_{\epsilon}$/) with the stress range .DELTA..epsilon. in .DELTA.K replaced by .DELTA..epsilon., strain range, gives one straight line of the .DELTA. $K_{\epsilon}$-d(2a)/dN relation for various values of stress range .DELTA.$_{\epsilon}$../.X>../.

A Study of Stress Intensity Factors using Micro Fiber Composite Sensors (MFC 센서를 이용한 응력 확대 계수 측정에 관한 연구)

  • Oh, Dong-Jin;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.29 no.3
    • /
    • pp.76-81
    • /
    • 2011
  • Recently, the structural failures due to fatigue occur frequently with the increase of size of ships and offshore structures. In this respect, the assessment of fatigue life and the residual strength are very important. Currently, the smart materials technology has demonstrated a variety of possibilities for a diagnosis of structural strength and structural health condition for large structures. The benefits and feature of the MFC sensor are more flexible, durable and reliable than conventional smart material. In this study, Micro Fiber Composite (MFC) sensor for the measurement of stress intensity factor (SIF) of two dimensional cracks induced in a structure is developed. Two MFC sensors are placed in the vicinity of the crack tip close to each other with the crack tip in between them. The SIFs of Mode I($K_I$) as well as of Mode II($K_{II}$) based on the piezoelectric constitutive law and fracture mechanics are calculated. In this study, the SIF values measured by MFC sensors are compared with the theoretical results and measured value.

Micromachining & Optical Properties of Li$_2$O-A1$_2$O$_3$-SiO$_2$ Glass System by Laser Treatment (레이저에 의한 Li$_2$O-A1$_2$O$_3$-SiO$_2$계 유리의 미세가공 및 광학적 특성)

  • 강원호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.4
    • /
    • pp.43-45
    • /
    • 2001
  • For photosensitive and micro-structuring in $Li_2O-A1_2O_3-SiO_2$glasses by laser treatment, Nd:YAG laser in 355 nm and 1064 nm wavelength was irradiated to the glass to investigate fracture characterization and optical changes. The fractured glass surfaces irradiated by 1064 nm laser was observed by Scanning Electron Microscope(SEM) and optical microscope, and optical changes caused by 355 nm later was identified from absorption spectra. In this study, it could be expected that the laser treatment technology will be utilized for 3-dimensional micro-structure, internal waveguide, optical memory by optical absorption changes in glass matrix.

  • PDF

Microstructural Study of Creep-Fatigue Crack Propagation for Sn-3.0Ag-0.5Cu Lead-Free Solder

  • Woo, Tae-Wuk;Sakane, Masao;Kobayashi, Kaoru;Park, Hyun-Chul;Kim, Kwang-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.33-41
    • /
    • 2010
  • Crack propagation mechanisms of Sn-3.0Ag-0.5Cu solder were studied in strain controlled push-pull creepfatigue conditions using the fast-fast (pp) and the slow-fast (cp) strain waveforms at 313 K. Transgranular cracking was found in the pp strain waveform which led to the cycle-dominant crack propagation and intergranular cracking in the cp strain waveform that led to the time-dominant crack propagation. The time-dominant crack propagation rate was faster than the cycle-dominant crack propagation rate when compared with J-integral range which resulted from the creep damage at the crack tip in the cp strain waveform. Clear recrystallization around the crack was found in the pp and the cp strain waveforms, but the recrystallized grain size in the cp strain waveform was smaller than that in the pp strain waveform. The cycle-dominant crack propagated in the normal direction to the specimen axis macroscopically, but the time-dominant crack propagated in the shear direction which was discussed in relation with shear micro cracks formed at the crack tip.

Mechanical Strength and Ultransonic Testing of End Cap Welds in Pressurized Heavy Water Reactor Fuel (중수로핵연료 봉단마개 용접부의 기계적 특성과 초음파 시험)

  • 이정원;최명선;정성훈;고진현
    • Journal of Welding and Joining
    • /
    • v.9 no.4
    • /
    • pp.60-68
    • /
    • 1991
  • The weld quality of end cap welds in Pressurized Heavy Water Reactor (PHWR) Fuel is extremely important for the fuel performance in the nuclear reactor. The quality of resistance upset welds is currently evaluated mainly by the metallographic examination although it reveals only two weld cross-sections in a circumference welds. This investigation was, firstly, carried out to determine whether the ultrasonic examination would be applied to detect weld defects in the end cap welds and, secondly, to measure the mechanical strength of upset butt welds as a function of phase shift percentage. The major results obtained in this study are as follows: 1. The weld current and amount of upset shrinkage linearly increased with increasing the phase shift percentage. 2. Above the phase shift 55%, the defects in the welds were completely eliminated with increasing the phase of sound weld was over the thickness of cladding tube. 3. The ultrasonic testing well detected such defects in the end cap welds as upset external crack, upset split, corner crack and irregular weld flash comparing with the results of metallography. 4. The micro-fissure in the corner of the end cap welds was reliably detected by ultrasonic testing. 5. The mechanical strength in the welds increased with increasing phase shift percentage but the fracture did't occur in the welds above 55%.

  • PDF