• 제목/요약/키워드: micro filtration

검색결과 79건 처리시간 0.024초

이산화탄소 분리를 위한 이온성액체 지지분리막의 제조 (Supported Ionic Liquid Membrane Preparation for Carbon Dioxide Separation)

  • 최미영;정건용
    • 멤브레인
    • /
    • 제22권4호
    • /
    • pp.280-283
    • /
    • 2012
  • 본 연구는 이산화탄소를 효율적으로 분리하기 위한 이온성액체 지지분리막 제조를 목적으로 한다. 공칭크기 0.1 ${\mu}m$ PVDF 정밀여과막에 이온성액체인 [bmim][${PF_6}^-$] (1-butyl-3-methylimidazolium hexafluorophosphate)를 분리막 세공내로 흡입시켜 고정화하였다. 제조된 이온성액체 지지막에 대한 $N_2$, $H_2$, $CO_2$ 기체의 투과도는 0.075, 0.203, 1.380 GPU로 측정되었으며 $CO_2/N_2$, $H_2/N_2$의 선택도는 각각 14.2와 2.69이었다. 또한 이온성액체 지지분리막은 이온성 액체가 운전압력 2.0 bar까지 세공 내에 고정되어 안정적으로 운전 가능하였다.

에어핸들링 유닛의 공기정화용 전기집진기의 방전극 비교 (Comparison of discharging electrodes for the electrostatic precipitator as an air filtration system in air handling units)

  • 신동호;우창규;김학준;김용진;한방우
    • 한국입자에어로졸학회지
    • /
    • 제13권1호
    • /
    • pp.11-16
    • /
    • 2017
  • Indoor air quality is of increasing concern because it is closely related human health. An air handling unit (AHU) can be used to control the indoor air quality related to particulate matters and $CO_2$ as well as air conditioning such as temperature and humidity of indoor air. An electrostatic precipitator has a high collection efficiency and low pressure drop, however, ozone can possibly generate from its chargers, which is one of drawbacks to apply it for indoor air control. Here we compared four charging electrodes such as a $50{\mu}m$ tungsten wire, a $100{\mu}m$ tungsten wire, a $16{\mu}m$-thickness Al foil and a carbon fabric comprised of $5-10{\mu}m$ fibers. The carbon fabric electrode showed a superior particle collection efficiency and a lower ozone generation at a given power consumption compared to tungsten wires of 50, $100{\mu}m$ and an Al foil electrode. This low ozone generating, micro-sized electrode can be applied to the electrostatic precipitator in AHU for indoor air control.

A study of improving filtration efficiency through SiC whisker synthesis on carbon felt by CVD VS method

  • 김광주;최두진
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.150-150
    • /
    • 2016
  • Mankind is enjoying a great convenience of their life by the rapid growth of secondary industry since the Industrial Revolution and it is possible due to the invention of huge power such as engine. The automobile which plays the important role of industrial development and human movement is powered by the Engine Module, and especially Diesel engine is widely used because of mechanical durability and energy efficiency. The main work mechanism of the Diesel engine is composed of inhalation of the organic material (coal, oil, etc.), combustion, explosion and exhaust Cycle process then the carbon compound emissions during the last exhaust process are essential which is known as the major causes of air pollution issues in recent years. In particular, COx, called carbon oxide compound which is composed of a very small size of the particles from several ten to hundred nano meter and they exist as a suspension in the atmosphere. These Diesel particles can be accumulated at the respiratory organs and cause many serious diseases. In order to compensate for the weak point of such a Diesel Engine, the DPF(Diesel Particulate Filter) post-cleaning equipment has been used and it mainly consists of ceramic materials(SiC, Cordierite etc) because of the necessity for the engine system durability on the exposure of high temperature, high pressure and chemical harsh environmental. Ceramic Material filter, but it remains a lot of problems yet, such as limitations of collecting very small particles below micro size, high cost due to difficulties of manufacturing process and low fuel consumption efficiency due to back pressure increase by the small pore structure. This study is to test the possibility of new structure by direct infiltration of SiC Whisker on Carbon felt as the next generation filter and this new filter is expected to improve the above various problems of the Ceramic DPF currently in use and reduction of the cost simultaneously. In this experiment, non-catalytic VS CVD (Vapor-Solid Chemical Vaporized Deposition) system was adopted to keep high mechanical properties of SiC and MTS (Methyl-Trichloro-Silane) gas used as source and H2 gas used as dilute gas. From this, the suitable whisker growth for high performance filter was observed depending on each deposition conditions change (input gas ratio, temperature, mass flow rate etc.).

  • PDF

하수의 고도처리를 위한 저비용 저에너지의 대체 막을 조합한 생물반응기의 개발 (Advanced Wastewater Treatment using Bioreactor Combined with Alternative Membrane)

  • 김동하
    • 상하수도학회지
    • /
    • 제19권1호
    • /
    • pp.25-30
    • /
    • 2005
  • In order to decrease the high costs of membrane process, we have tried to develop two alternatives to membrane; a cartridge type filter and a metal membrane were tested for the high permeation flux with low cost and low energy. This research mainly focused on three points; 1) operation with high permeation flux by using of a cartridge type filter and a metal membrane, 2) removals of the filterable organic materials (FOC) by pretreatments for the membrane fouling control, and 3) advanced wastewater treatment by SMBR process with intermittent aeration and high MLSS. An Intermittently aerated membrane bioreactor using a submerged micro filter (cartridge type) was applied in laboratory scale for the advanced wastewater treatment. To minimize membrane fouling, intermittent aeration was applied inside of the filter with $3.0kg_f/cm^2$. The experiments was conducted for 6 months with three different HRTs (8, 10, 12 hr) and high MLSS of 6,000 and 10,000mg/L. The filtration process could be operated up to 50 days with permeation flux of 500LMH. Regardless of the operating conditions, more than 95% of COD, BOD and SS were removed. Fast and complete nitrification was accomplished, and denitrification was appeared to be the rate-limiting step. More than 75% T-N could be removed due to the endogenous denitrification. T-P removal efficiency was increased to 80% under the condition of MLSS 10,000mg/L.

게 향미제의 저장중 품질특성 변화 (Changes in the Quality of Crab-like Flavorants during Storage)

  • 백정화;정은정;전선영;차용준
    • 한국수산과학회지
    • /
    • 제45권2호
    • /
    • pp.104-113
    • /
    • 2012
  • Crab-like flavorants (CFs) were made from snow crab cooker effluent (SCCE) using response surface methodology (RSM) and reaction flavoring technology (RFT). Type A CF was made from SCCE via RSM, RFT, adding starch syrup, centrifugation, and microfiltration. Type B was made from type A by adding the food additives dimethyl sulfide, ethyl valerate and fish sauce. The stability of the CFs was evaluated in terms of the color values, sensory evaluation, and flavor profiles after storage for 90 days at three different temperatures: 10, 20, and $30^{\circ}C$. The compounds, ethanol and 3-methyl-1-butanol, were considered key components of off-flavor and a decrease in dimethyl-2-vinylpyrazine affected the occurrence of off-flavor. It may be a microbial metabolite arising from contamination and lab-scale micro-filtration. At the lowest temperature ($10^{\circ}C$), the decrease in volatile compounds, such as pyrazines, was not as dramatic as at $20^{\circ}C$ and $30^{\circ}C$ and alcohol formation was prevented or delayed. Therefore, it is necessary to store CFs at < $10^{\circ}C$ with suitable sterilization to preserve volatile flavor compounds and prevent off-flavor from occurring.

하수 2차처리 방류수의 총인 고효율 처리를 위한 응집·막분리 혼성처리 (Coagulation-membrane separation hybrid treatment of secondary treated effluent for high efficiency phosphorus removal)

  • 최욱진;이병하;박준홍;차호영;이병찬;송경근
    • 상하수도학회지
    • /
    • 제32권1호
    • /
    • pp.47-53
    • /
    • 2018
  • This study investigated phosphorus removal from secondary treated effluent using coagulation-membrane separation hybrid treatment to satisfy strict regulation in wastewater treatment. The membrane separation process was used to remove suspended phosphorus particles after coagulation/settlement. Membrane separation with $0.2{\mu}m$ pore size of micro filtration membrane could reduce phosphorus concentration to 0.02 mg P/L after coagulation with 1 mg Al/L dose of polyaluminum chloride (PACl). Regardless of coagulant, the residual concentration of phosphorus decreased as the dose increased from 1.5 to 3.5 mg Al/L, while the target concentration of 0.05 mg P/L or less was achieved at 2.5 mg Al/L for the aluminum sulfate (Alum) and 3.5 mg Al/L for PACl. Moreover, alum showed better membrane flux as make bigger particles than PACl. Alum showed a 40% of flux decrease at 2.5 mg Al/L dose, while PACl indicated a 50% decrease of membrane flux even with a higher dose of 3.5 mg Al/L. Thus, alum was more effective coagulant than PACl considering phosphorus removal and membrane flux as well as its dose. Consequently, the coagulation-membrane separation hybrid treatment could be mitigate regulation on phosphorus removal as unsettleable phosphorus particles were effectively removed by membrane after coagulation.

Fabrication of Transparent Ultra-thin Single-walled Carbon Nanotube Films for Field Emission Applications

  • Jang, Eun-Soo;Goak, Jung-Choon;Lee, Han-Sung;Kim, Myoung-Su;Lee, Nae-Sung
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.353-353
    • /
    • 2008
  • Carbon nanotubes (CNTs) are attractive for field emitter because of their outstanding electrical, mechanical, and chemical properties. Several applications using CNTs as field emitters have been demonstrated such as field emission display (FED), backlight unit (BLU), and X-ray source. In this study, we fabricated a CNT cathode using transparent ultra-thin CNT film. First, CNT aqueous solution was prepared by ultrasonically dispersing purified single-walled carbon nanotubes (SWCNTs) in deionized water with sodium dodecyl sulfate (SDS). To obtain the CNT film, the CNT solution in a milliliter or even several tens of micro-litters was deposited onto a porous alumina membrane through vacuum filtration process. Thereafter, the alumina membrane was solvated by the 3 M NaOH solution and the floating CNT film was easily transferred to an indium-tin-oxide (ITO) glass substrate of $0.5\times0.5cm^2$ with a film mask. The transmittance of as-prepared ultra-thin CNT films measured by UV-Vis spectrophotometer was 68~97%, depending on the amount of CNTs dispersed in an aqueous solution. Roller activation, which is a essential process to improve the field emission characteristics of CNT films, increased the UV-Vis transmittance up to 93~98%. This study presents SEM morphology of CNT emitters and their field emission properties according to the concentration of CNTs in an aqueous solutions. Since the ultra-thin CNT emitters prepared from the solutions show a high peak current density of field emission comparable to that of the paste-base CNT emitters and do not contain outgassing sources such as organic binders, they are considered to be very promising for small-size-but-high-end applications including X-ray sources and microwave power amplifiers.

  • PDF

고강도 PVDF 중공사 정밀여과막 제조 특성 (Preparation of Higher Reinforced PVDF Hollow Fiber Microfiltration Membrane)

  • 최호상;박헌휘
    • 멤브레인
    • /
    • 제20권4호
    • /
    • pp.320-325
    • /
    • 2010
  • 화학적 안정성이 양호하고, 제막조건이 온화한 재료인 poly(vinylidene fluoride) (PVDF)를 주재료로 사용하여 용매, 첨가제, 혼합고분자 및 제막조건의 변화에 따른 고강도 친수성 정밀여파(microfiltration, MF) 중공사 분리막의 실험에 의해 고찰하였다. 제조된 MF 중공사막의 막성능은 평균 공경 $0.3{\mu}m$, 인장강도 $42kg_f/cm^2$, 순수 투과유량은 600 LMH을 얻었다. 제막과정에서 다양한 첨가제의 막성능을 검토한 결과는 순수투과유량과 제거율에 상당한 영향을 미치고 있음을 알 수 있었다. MF막의 친수성을 개선하기 위해 소수성 PVDF와 상호 용해성 이 좋은 친수성 poly(methyl methacrylate) (PMMA)를 혼합하여 투과성능과 제거율을 개선한 우수한 친수성 MF막을 제조할 수 있었다.

광측매반응에 의한 Reactive Black 5의 색도제거 연구 (Decolorization of Reactive Black 5 by Photocatalytic Oxidation)

  • 양정목;송진수;박철환;김상용
    • 청정기술
    • /
    • 제14권3호
    • /
    • pp.211-217
    • /
    • 2008
  • 본 연구에서는 광촉매 산화반응을 이용한 반응성염료(Reactive Black 5)의 오염부하 저감율(TOC, 색도 제거율)을 조사하였다. 광촉매 반응활성의 주요한 인자로서 염료농도, $TiO_2$ 주입량 및 pH조건을 최적화하였으며, 실험에 적용된 최적의 조건은 각각 100 mg/L, 2g/L, pH 4.9였다. 용존산소의 경우에는 산소의 농도가 증가함에 따라 처리속도도 함께 증가하였다. 새로운 $TiO_2$를 적용한 경우와 MF 세라믹 분리막에 의해 재생된 $TiO_2$를 각각 적용하여 실험한 결과 색도 제거율과 처리속도에는 약간의 차이를 보였으나, 반응 전반에는 영향을 주지 않았다.

  • PDF

용존 철(II) 제거를 위한 미셀형성 세라믹 정밀여과: 계면활성제 농도 및 질소 역세척의 영향 (Micellar Enhanced Ceramic Microfiltration for Removal of Aqueous Ferrous Ion: Effect of Surfactant Concentration and $N_2$-back-flushing)

  • 박진용;강성규
    • 멤브레인
    • /
    • 제19권2호
    • /
    • pp.136-144
    • /
    • 2009
  • 본 연구에서는 공업용수 중에 미량 함유될 수 있는 철 이온 제거를 위해 철 용액에 음이온 계면활성제 SDS를 주입하여 미셀을 형성한 후, 미셀 표면에 철 이온의 흡착 또는 결합으로 형성된 응집체를 관형 세라믹 정밀여과막으로 제거하였다. 음이온 계면활성제의 영향을 살펴보기 위해 일정한 1mM의 철 농도에서 음이온 계면활성제의 농도를 $0{\sim}10mM$로 변화시켰다. 그 결과, 6mM 일 때 가장 높은 철 제거율 88.97%를 보였다. SDS 농도에 따른 미셀 응집체의 입도 분포를 확인하기 위해 전기영동광산란분광광도계(Electrophoretic Light Scattering Spectrometer)를 사용하여 분석 한 결과, 6mM 일때 큰 응집체의 분포도가 가장 높았다. 또한, 세라믹 분리막에 대하여 주기적 질소 역세척을 실시할 경우 역세척 주기의 영향을 조사하였다. 그 결과, NCMT-7231 (평균기공 $0.10{\mu}m$) 분리막의 최적 역세척 시간(BT)는 20초이었다.