• Title/Summary/Keyword: micro filtration

Search Result 79, Processing Time 0.027 seconds

Removal of cesium(137Cs) and iodide(127I) by microfiltration·nanofiltration·reverese osmosis membranes (정밀여과·나노여과·역삼투 막에 의한 세슘과 요오드의 제거)

  • Chae, Seon-Ha;Kim, Chung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.5
    • /
    • pp.549-554
    • /
    • 2014
  • This study was evaluated the applicability of the membrane filtration process (Micro Filtration (MF), nanofiltration membranes (NF), reverse osmosis (RO)) on the major radioactive substances, iodine ($I^-$) and cesium ($Cs^+$) using membranes produced in Korea and domestic raw water. Iodine ($I^-$) or cesium ($Cs^+$) in the microfiltration membrane (MF) process could not be expected removal efficiency by eliminating marginally at the combined state with colloidal and turbidity material. At the domestic raw water (lake water, turbidity 1.2 NTU, DOC 1.3 mg/L) conditions, nanofiltration membrane (NF) and reverse osmosis (RO) showed a high removal rate of about 88 ~ 99% for iodine ($I^-$) and cesium ($Cs^+$) and likely to be an alternative process for the removal of radioactive material.

Removal of BP-3 Endocrine Disrupting Chemical (EDC) using cellulose acetate and ZnOnano particles mixed matrix membranes

  • Rajesha, B.J.;Chandan, H.R.;Sunil, K.;Padaki, Mahesh;Balakrishna, Geetha R.
    • Membrane and Water Treatment
    • /
    • v.7 no.6
    • /
    • pp.507-520
    • /
    • 2016
  • The effect of ZnO on cellulose acetate in the removal of benzophenone-3 (BP-3) was investigated. The benzophenone-3 (BP-3) which is an endocrine disrupting chemical (EDC) was completely removed (100%) from the drinking water using Cellulose Acetate (CA) and zinc oxide (ZnO) composite membranes. The membranes were prepared by DIPS method and the filtration experiments were conducted by dead end filtration unit. The macrostructure of the membrane were studied by ATR-IR and XRD Spectra's. Atomic force microscopy (AFM) and Scanning electron microscopy (SEM) were used to study the micro properties of the membranes. The laboratory experiments such as water uptake study and pure water flux performed to confirm the increasing hydrophilicity. The enhancing hydrophilicity was confirmed with respect to higher the concentration of nanoparticles. Evaluation of BP-3 removal was carried in different experimental conditions, such as, different Trans membrane pressure and different concentration of feed. The membrane with low pressure showed better performance by rejecting 100% of BP-3. However, 1 ppm, 3 ppm and 6 ppm of feed solution was used and among them 3 ppm of feed solution gives 100% rejection. The ZnO nanoparticales enhances the performance of CA membrane by showing maximum rejection.

Effect of Periodic Water-back-flushing Time ad Period in Water Treatment by Tubular Alumina Ceramic Microfiltration

  • Park, Jin-Yong;Lee, A-Reum
    • Korean Membrane Journal
    • /
    • v.10 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • In this study periodic water-back-flushing using permeate water was performed to minimize membrane fouling and to enhance permeate flux in tubular ceramic micro filtration system for Gongji stream water treatment in Chuncheon city. The filtration time (FT) 2 min with periodic 6 sec water-back-flushing showed the highest value of dimensionless permeate flux ($J/J_0$), and the lowest value of resistance of membrane fouling ($R_f$), and we acquired the highest total permeate volume ($V_T$) of 7.44L. Also in the results of BT effect at fixed FT 10 min, BT (back-flushing time) 20 sec showed the lowest value of $R_f$ and the highest value of $J/J_0$, and we could be obtained the highest $V_T$ of 8.04 L. Consequently FT 10 min and BT 20 sec could be the optimal condition in Gongji stream water treatment. Then the average rejection rates of pollutants by our tubular ceramic MF system were 93.8% for Turbidity, 20.7% for $COD_{Mn}$, 39.2% for $NH_3$-N and 31.5% for T-P.

Effect of $N_2$-back-flushing Time and TMP in Lake Water Treatment Using Multichannel Ceramic Microfiltration Membranes (다채널 세라믹 정밀여과막으로 호소수 처리시 질소 역세척 시간 및 막간 압력차의 영향)

  • Park, Jin-Yong;Park, Bo-Reum
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.124-133
    • /
    • 2007
  • In this study, we treated lake water by 2 kinds of multichannel ceramic micro filtration membranes. We could investigate effects of $N_2-back-flushing$ time (BT) and transmembrane pressure (TMP), and find optimal operating conditions. The BT were changed in $10{\sim}60$ sec, TMP in $0.6{\sim}2.0$ bar at fixed filtration time (FT) 8 min, flow rate 2.0 L/min and back-flushing pressure 2.0 bar. Also, the optimal conditions were discussed in the viewpoints of resistance of membrane fouling $(R_f)$, dimensionless permeate flux $(J/J_o)$, permeate flux (J) and total permeate volume $(V_T)$. As result, optimal back-flushing conditions for HC04 ($0.4{\mu}m$ pore size) and HC10 membrane $(1.0{\mu}m)$ were BT=10 sec and BT=20 sec, respectively. Then, higher TMP should increase the driving force, and could produce more VT. Average rejection rates of pollutants were higher than 95.4% for turbidity, $12.7{\sim}20.1%\;for\;COD_{Mn},\;0.0{\sim}6.4%\;for\;NH_3-N,\;1.9{\sim}4.6%$ for T-N and $34.9{\sim}88.4%$ for T-P.

Surfactant-Free Microspheres of Poly(${\varepsilon}-caprolactone$)/Poly(ethylene glycol)/Poly(${\varepsilon}-caprolactone$) Triblock Copolymers as a Protein Carrier

  • Sun, Sang-Wook;Jeong, Young-Il;Kim, Sung-Ho
    • Archives of Pharmacal Research
    • /
    • v.26 no.6
    • /
    • pp.504-510
    • /
    • 2003
  • The aim of this study is to prepare biodegradable microspheres without the use of surfactants or emulsifiers for a novel sustained delivery carriers of protein drugs. A poly($\varepsilon$-caprolactone)/poly(ethylene glycol)/poly($\varepsilon$-caprolactone) (CEC) triblock copolymer was synthesized by the ring-opening of $\varepsilon$-caprolactone with dihydroxy poly (ethylene glycol) to prepare surfactant-free microspheres. When dichloromethane (DCM) or ethyl formate (EF) was used as a solvent, the formation of microspheres did not occur. Although the microspheres could be formed prior to lyophilization under certain conditions, the morphology of microspheres was not maintained during the filtration and lyophilization process. Surfactant-free microspheres were only formed when ethyl acetate (EA) was used as the organic solvent and showed good spherical micro-spheres although the surfaces appeared irregular. The content of the protein in the micro-sphere was lower than expected, probably because of the presence of water channels and pores. The protein release kinetics showed a burst release until 2 days and after that sustained release pattern was showed. Therefore, these observations indicated that the formation of microsphere without the use of surfactant is feasible, and, this the improved process, the protein is readily incorporated in the microsphere.

Water transport through hydrophobic micro/nanoporous filtration membranes on different scales

  • Mian, Wang;Yongbin, Zhang
    • Membrane and Water Treatment
    • /
    • v.13 no.6
    • /
    • pp.313-320
    • /
    • 2022
  • Theoretical calculation results are presented for the enhancement of the water mass flow rate through the hydrophobic micro/nano pores in the membrane respectively on the micrometer and nanometer scales. The water-pore wall interfacial slippage is considered. When the pore diameter is critically low (less than 1.82nm), the water flow in the nanopore is non-continuum and described by the nanoscale flow equation; Otherwise, the water flow is essentially multiscale consisting of both the adsorbed boundary layer flow and the intermediate continuum water flow, and it is described by the multiscale flow equation. For no wall slippage, the calculated water flow rate through the pore is very close to the classical hydrodynamic theory calculation if the pore diameter (d) is larger than 1.0nm, however it is considerably smaller than the conventional calculation if d is less than 1.0nm because of the non-continuum effect of the water film. When the driving power loss on the pore is larger than the critical value, the wall slippage occurs, and it results in the different scales of the enhancement of the water flow rate through the pore which are strongly dependent on both the pore diameter and the driving power loss on the pore. Both the pressure drop and the critical power loss on the pore for starting the wall slippage are also strongly dependent on the pore diameter.

Study on Hindered Diffusion of Single Polyelectrolyte Chain in Micro-Pores by Employing Brownian Dynamics Simulations (브라운 동력학 시뮬레이션에 의한 미세기공에서 단일한 다가전해질 사슬의 제한확산 연구)

  • 전명석;곽현욱
    • Membrane Journal
    • /
    • v.12 no.4
    • /
    • pp.207-215
    • /
    • 2002
  • The hindered diffusion in confined spaces is an important phenomenon to understand in a micro-scale the filtration mechanism determined by the particle motion in membrane pores. Compared to the case of spherical colloids, both the theoretical investigations and the experiments on the hindered diffusion of polyelectrolytes is actually more difficult, due to lots of relevant parameters resulting from the complicated conformational properties of the polyelectrolyte chain. We have successfully performed the Brownian dynamics simulations upon a single polyeiectrolyte confined in a slit-like pore, where a coarse-grained bead-spring model incorporated with Debye-Huckel interaction is properly adopted. For the given sizes of both the polyelectrolyte and the pore width, the hindered diffusion coefficient decreases as the solution ionic concentration decreases. It is evident that a charge effect of the pore wall enhances the hindered diffusion of polyelectrolyte. Simulation results allow us to make sense of the diffusive transport through the micro-pore, which is restricted by the influences of the steric hindrance of polyelectrolytes as well as the electrostatic repulsion between the polyelectrolytes and pore wall.

Enhanced Virus Removal by Flocculation and Microfiltration

  • Han Binbing;Carlson Jonathan O.;Powers Scott M.;Wickramasinghe S. Ranil
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.1
    • /
    • pp.6-9
    • /
    • 2002
  • In this work we have investigated the feasibility of virus clearance by flocculation and tangential flow microfiltration. Chinese hamster ovary cell feed streams were spiked with minute virus of mice and then flocculated using cationic polyelectrolytes prior to tangential flow microfiltration. Our results indicate that flocculation prior to microfiltration leads to more than 100 fold clearance of minute virus of mice particles in the permeate. Today, validation of virus clearance is a major concern in the manufacture of biopharmaceutical products. Frequently new unit operations are added simply to validate virus clearance thus increasing the manufacturing cost. The results obtained here suggest that virus clearance can be obtained during tangential flow microfiltration. Since tangential flow microfiltration is frequently used for bioreactor harvesting this could be a low cost method to validate virus clearance.

Liquid-Liquid Phase Separation in a Quaternary System of PolysuIfone/Polyethersulfone/N-Methyl-2-pyrrolidone/water (사성분계 시스템의 액액상분리에 관한 연구 (폴리술폰/폴리에테르술폰/NMP/물))

  • 백기전;김제영;이환광;김성철
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.22-24
    • /
    • 1998
  • 1. INTRODUCTION : The phase inversion method is widely used to prepare a variety of polymeric membranes ranging from micro-filtration to gas separation. The final morphology obtained by immersion precipitation strongly reflects the thermodynamics and kinetics of the system involved. The equilibrium thermodynamics of the ternary system of polymer/solvent/ nonsolvent is still very important to understand and predict membrane structure. Polysulfone (PSf) and polyethersulfone (PES) are important polymers as membrane materials due to the chemical resistance, mechanical strength, thermal stability and transport properies. There are several reports on the experimental phase diagrams in ternary mixtures of PSf/solvent/nonsolvent, and PES/solvent/nonsolvent. It would be interesting to investigate the solution thermodynamics containing these two polymers since PES is slightly less hyclrophobic than PSf.

  • PDF

Fabrication of Metallic Nano-filter Using UV-Imprinting Process (UV 임프린팅 공정을 이용한 금속막 필터제작)

  • Noh Cheol Yong;Lee Namseok;Lim Jiseok;Kim Seok-min;Kang Shinill
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.237-240
    • /
    • 2005
  • The demand of micro electrical mechanical system (MEMS) bio/chemical sensor is rapidly increasing. To prevent the contamination of sensing area, a filtration system is required in on-chip total analyzing MEMS bio/chemical sensor. A nano-filter was mainly applied in some application detecting submicron feature size bio/chemical products such as bacteria, fungi and so on. We suggested a simple nano-filter fabrication process based on replication process. The mother pattern was fabricated by holographic lithography and reactive ion etching process, and the replication process was carried out using polymer mold and UV-imprinting process. Finally the nano-filter is obtained after removing the replicated part of metal deposited replica. In this study, as a practical example of the suggested process, a nano-dot array was replicated to fabricate nano-filter fur bacteria sensor application.

  • PDF