• Title/Summary/Keyword: micro cracking

Search Result 171, Processing Time 0.024 seconds

Three-Dimensional Microstructural Modelling of Wear, Crack Initiation and Growth in Rail Steel

  • Fletcher, D.I.;Franklin, F.J.;Garnham, J.E.;Muyupa, E.;Papaelias, M.;Davis, C.L.;Kapoor, A.;Widiyarta, M.;Vasic, G.
    • International Journal of Railway
    • /
    • v.1 no.3
    • /
    • pp.106-112
    • /
    • 2008
  • Rolling-sliding, cyclic contact of wheel and rail progressively alters the microstructure of the contacting steels, eventually leading to micro-scale crack initiation, wear and macro-scale crack growth in the railhead. Relating the microstructural changes to subsequent wear and cracking is being accomplished through modelling at three spatial scales: (i) bulk material (ii) multi-grain and (iii) sub-grain. The models incorporate detailed information from metallurgical examinations of used rails and tested rail material. The initial 2-dimensional models representing the rail material are being further developed into 3-dimensional models. Modelling is taking account of thermal effects, and traffic patterns to which the rails are exposed.

  • PDF

Study on Fracture Toughness and Heat Input in Weld HAZ of Cr-Mo Steel (I) (welding structure) (Cr-Mo강 용접열영향부의 파괴인성과 용접입열량에 관한 연구(I) (HAZ 고유조직을 중심으로))

  • 임재규;정세희
    • Journal of Welding and Joining
    • /
    • v.2 no.2
    • /
    • pp.54-61
    • /
    • 1984
  • Construction of welding structure is greatly dependent upon welding heat cycle. Fracture toughness is decreased remarkablely due to coarse grained HAZ and inequal residual stress of three dimensions to originate in welding. Post weld heat treatment(PWHT) is carried out to increase the fracture toughness of HAZ and to remove the residual stress. There occur some problem such as toughness decrement and stress relief cracking(SRC) in the coarse grained HAZ subject to the effect of tempering treatment. Therefore, in this paper, the effect of heat inputs affecting cooling rate and PWHT under the no stress on fracture toughness were evaluated by crack opening displacement (COD), SEM and micro-hardness test. Experimental results are as follows; 1. Fracture toughness of weld HAZ is dependent upon weld heat cycle and it is decreased with increment of heat input, but the degree of improvement of fracture toughness after PWHT was linearly increased with heat input. 2. Hardness of the parent metal is not changed, but the softening of coarse grained HAZ is remarkable due to PWHT. 3. Fracture surface of as-weld show the perfect brittle fracture with the cleavage fracture, but after PWHT they appear the ductile fracture surface with dimple.

  • PDF

Study of High Speed Steel AISI M4 Powder Deposition using Direct Energy Deposition Process (DED 기술을 이용한 고속도 공구강 M4 분말 적층에 관한 연구)

  • Lee, E.M.;Shin, G.W.;Lee, K.Y.;Yoon, H.S.;Shim, D.S.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.353-358
    • /
    • 2016
  • Direct energy deposition (DED) is an additive manufacturing technique that involves the melting of metal powder with a high-powered laser beam and is used to build a variety of components. In recent year, it can be widely used in order to produce hard, wear resistant and/or corrosion resistant surface layers of metallic mechanical parts, such as dies and molds. For the purpose of the hardfacing to achieve high wear resistance and hardness, application of high speed steel (HSS) can be expected to improve the tool life. During the DED process using the high-carbon steel, however, defects (delamination or cracking) can be induced by rapid solidification of the molten powder. Thus, substrate preheating is generally adopted to reduce the deposition defect. While the substrate preheating ensures defect-free deposition, it is important to select the optimal preheating temperature since it also affects the microstructure evolution and mechanical properties. In this study, AISI M4 powder was deposited on the AISI 1045 substrate preheated at different temperatures (room temperature to $500^{\circ}C$). In addition, the micro-hardness distribution, cooling rates, and microstructures of the deposited layers were investigated in order to observe the influence of the substrate preheating on the mechanical and metallurgical properties.

The effect of particle size on the edge notched disk (END) using particle flow code in three dimension

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.663-673
    • /
    • 2018
  • In this study, the effect of particle size on the cracks propagation and coalescence or cracking pattern of the edge notched disc specimens are investigated. Firstly, calibration of PFC3D was performed using Brazilian experimental test output. Then micro parameters were used to build edge notched disc specimen. The horizontal wall of the assembly is let to move downward with a standard low speed of 0.016 m/s. The numerical results show that the tensile cracks are dominant failure pattern for the modeled discs. These tensile cracks initiate from the pre-existing notch tip and propagate parallel to the loading direction then interact with the upper boundary of the modeled specimen. As the size of the balls (ball diameter) decrease the number of tensile cracks increase. The tensile fracture toughness of the samples also decreases as the particle size increases. Understanding the crack propagation and crack coalescence phenomena in brittle materials such as concretes and rocks is of paramount importance in the stability analyses for engineering structures such as rock slopes, underground structures and tunneling.

Mechanical behaviour of steel fibre reinforced SCC after being exposed to fire

  • Ponikiewski, Tomasz;Katzer, Jacek;Kilijanek, Adrian;Kuzminska, Elzbieta
    • Advances in concrete construction
    • /
    • v.6 no.6
    • /
    • pp.631-643
    • /
    • 2018
  • The focus of this paper is given to the investigation of mechanical properties of steel fibre reinforced self-compacting concrete after being exposed to fire. The research programme covered tests of two sets of beams: specimens subjected to fire and specimens not subjected to fire. The fire test was conducted in an environment mirroring one of possible real fire situations where concrete surface for an extended period of time is directly exposed to flames. Micro-cracking of concrete surface after tests was digitally catalogued. Compressive strength was tested on cube specimens. Flexural strength and equivalent flexural strength were tested according to RILEM specifications. Damages of specimens caused by spalling were assessed on a volumetric basis. A comparison of results of both sets of specimens was performed. Significant differences of all tested properties between two sets of specimens were noted and analysed. It was proved that the limit of proportionality method should not be used for testing fire damaged beams. Flexural characteristics of steel fibre reinforced self-compacting concrete were significantly influenced by fire. The influence of fire on properties of steel fibre reinforced self-compacting concrete was discussed.

Mechanical and Durability Characteristics of Latex-Modified Concrete Using Ultra Rapid Hardening Cement (초속경 시멘트를 이용한 라텍스 개질 콘크리트의 역학성능과 내구성능)

  • Park, Sang-Hyun;Jung, Si-young;Kim, Hyun-yu;Choi, Kyoung-Kyu
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.5
    • /
    • pp.153-160
    • /
    • 2019
  • The purpose of this study was to investigate the mechanical and durability characteristics of latex-modified concrete using ultra rapid hardening cement : four types of mechanical tests including compressive strength, modulus of elasticity, flexural strength and bond strength were performed; and seven types of durability tests including resistance of concrete to chloride ion penetration, freeze-thaw resistance, scaling resistance, coefficient of thermal expansion, cracking tendency, abrasion resistance and drying shrinkage were performed. Required material performance of each test was determined in accordance with the Korea specification for repair of concrete and pavement repairing materials. The test results satisfied the required material performances, and presented a good mechanical and durability characteristics. In particularly, the materials showed early development of compressive strength, flexural strength and bond strength at 3 and 4 hours after curing. SEM photos were also taken to investigate the micro structures of the materials after chloride ion penetration test.

Non-destructive evaluation of steel and GFRP reinforced beams using AE and DIC techniques

  • Sharma, Gaurav;Sharma, Shruti;Sharma, Sandeep K.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.637-650
    • /
    • 2021
  • The paper presents an investigation of the widely varying mechanical performance and behaviour of steel and Glass Fibre Reinforced Polymer (GFRP) reinforced concrete beams using non-destructive techniques of Acoustic Emission (AE) and Digital Image Correlation (DIC) under four-point bending. Laboratory experiments are performed on both differently reinforced concrete beams with 0.33%, 0.52% and 1.11% of tension reinforcement against balanced section. The results show that the ultimate load-carrying capacity increases with an increase in tensile reinforcement in both cases. In addition to that, AE waveform parameters of amplitude and number of AE hits successfully correlates and picks up the divergent mechanism of cracking initiation and progression of failure in steel reinforced and GFRP reinforced concrete beams. AE activity is about 20-30% more in GFRP-RC beams as compared to steel-RC beams. It was primarily due to the lower modulus of elasticity of GFRP bars leading to much larger ductility and deflections as compared to steel-RC beams. Furthermore, AE XY event plots and longitudinal strain profiles using DIC gives an online and real-time visual display of progressive AE activity and strains respectively to efficaciously depict the crack evolution and their advancement in steel-RC and GFRP-RC beams which show a close matching with the micro-and macro-cracks visually observed in the actual beams at various stages of loading.

The Investigation for Detection of Crack Initiation in the CFRP Laminates under Flexural Loading Test (굽힘하중에서 탄소섬유 복합적층재의 균열 발생 측정에 관한 연구)

  • Lee, Jun Hyuk;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.5
    • /
    • pp.7-13
    • /
    • 2022
  • Digital image correlation (DIC) is a method used to measure the displacement and strain of structures. It involves transforming and analyzing images before and after deformation using correlation coefficients from irregular light and shade on the surface of structures. In the present study, a microspeckle pattern was applied to the surface of a specimen to identify initial cracking. The test specimen constituted CFRP composites laminated on a curved Al liner The specimen was manufactured by stacking 100 ply of CFRP prepregs in the 0° and 90° directions in a three-point bending test. The equivalent strain was evaluated through DIC analysis after monitoring deformation using a CCD camera. Fracture shape was observed using a microscope. The equivalent strain contour distribution was checked until the maximum load fracture occurred at the center of the test specimen. Variations in the strain indicated the initial occurrence and progression of microcracks. These results can be used to improve the accuracy of detecting micro crack initiation and to achieve structural stability.

Numerical investigation of the hysteretic response analysis and damage assessment of RC column

  • Abdelmounaim Mechaala;Benazouz Chikh;Hakim Bechtoula;Mohand Ould Ouali;Aghiles Nekmouche
    • Advances in Computational Design
    • /
    • v.8 no.2
    • /
    • pp.97-112
    • /
    • 2023
  • The Finite Element (FE) modeling of Reinforced Concrete (RC) under seismic loading has a sensitive impact in terms of getting good contribution compared to experimental results. Several idealized model types for simulating the nonlinear response have been developed based on the plasticity distribution alone the model. The Continuum Models are the most used category of modeling, to understand the seismic behavior of structural elements in terms of their components, cracking patterns, hysteretic response, and failure mechanisms. However, the material modeling, contact and nonlinear analysis strategy are highly complex due to the joint operation of concrete and steel. This paper presents a numerical simulation of a chosen RC column under monotonic and cyclic loading using the FE Abaqus, to assessthe hysteretic response and failure mechanisms in the RC columns, where the perfect bonding option is used for the contact between concrete and steel. While results of the numerical study under cyclic loading compared to experimental tests might be unsuccessful due to the lack of bond-slip modeling. The monotonic loading shows a good estimation of the envelope response and deformation components. In addition, this work further demonstrates the advantage and efficiency of the damage distributions since the obtained damage distributions fit the expected results.

Optimal Electropolishing Condition of Austenitic Stainless Steel Specimens for Slow Strain Rate Tensile Testing (오스테나이트 스테인리스강 저속인장시험편의 최적 전해연마 특성)

  • Min-Jae Choi;Eun-Byeoul Jo;Dong-Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.457-465
    • /
    • 2023
  • Irradiation-assisted stress corrosion cracking (IASCC) is one of the main degradation mechanisms of austenitic stainless steels, which are used as reactor internal materials. Slow strain rate testing (SSRT) has been widely applied to evaluate the IASCC initiation characteristics of proton-irradiated tensile specimens. Tensile specimens require low surface roughness for micro-crack observation, and electropolishing is the most important specimen pre-treatment process used for this. In this study, optimal electropolishing conditions were examined through analyzing results of polarization experiments and surface roughness measurements after electropolishing. Corrosion cell and electropolishing equipment were fabricated for polarization tests and electropolishing experiments using SSRT specimens. The experimental parameters were electropolishing time, current density, electrolyte temperature, and stirring speed. The optimal electropolishing conditions for SSRT tensile specimens made of type 316 stainless steel were evaluated as a polishing time of 180 seconds, a current density of 0.15 A/cm2, an electrolyte temperature of 60 ℃, and a stirring speed of 200 RPM.