• Title/Summary/Keyword: micro crack

Search Result 504, Processing Time 0.021 seconds

Application of Acoustic Emission for Assessing Deterioration in Reinforced Concrete Beams (철근 콘크리트 빔의 노화도 평가를 위한 음향방출 기술의 응용)

  • Yoon, Dong-Jin;Park, Phi-Lip;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.4
    • /
    • pp.276-284
    • /
    • 2000
  • The acoustic emission (AE) behavior of reinforced concrete beams tested under flexural loading was investigated to characterize and identify the source of damage. This research was aimed at identifying the characteristic AE response associated with micro-crack development, localized crack propagation, corrosion, and debonding of the reinforcing steel. Concrete beams were prepared to isolate the damage mechanisms by using plain, notched-plain, reinforced, and corroded-reinforced specimens. The beams were tested using four-point cyclic step-loading. The AE response was analyzed to obtain key parameters such as the time history of AE events, the total number and rate of AE events, and the characteristic features of the waveform. Initial analysis of the AE signal has shown that a clear difference in the AE response is observed depending on the source of the damage. The Felicity ratio exhibited a correlation with the overall damage level, while the number of AE events during unloading can be an effective criterion to estimate the level of corrosion distress in reinforced concrete structures. Consequently, AE measurement characterization appears to provide a promising approach for estimating the level of deterioration in reinforced concrete structure.

  • PDF

Low-Cost Cultivation and Sporulation of Alkaliphilic Bacillus sp. Strain AK13 for Self-Healing Concrete

  • Hong, Minyoung;Kim, Wonjae;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1982-1992
    • /
    • 2019
  • The alkaliphilic, calcium carbonate precipitating Bacillus sp. strain AK13 can be utilized in concrete for self-repairing. A statistical experimental design was used to develop an economical medium for its mass cultivation and sporulation. Two types of screening experiment were first conducted to identify substrates that promote the growth of the AK13 strain: the first followed a one-factor-at-a-time factorial design and the second a two-level full factorial design. Based on these screening experiments, barley malt powder and mixed grain powder were identified as the substrates that most effectively promoted the growth of the AK13 strain from a range of 21 agricultural products and by-products. A quadratic statistical model was then constructed using a central composite design and the concentration of the two substrates was optimized. The estimated growth and sporulation of Bacillus sp. strain AK13 in the proposed medium were 3.08 ± 0.38 × 108 and 1.25 ± 0.12 × 108 CFU/ml, respectively, which meant that the proposed low-cost medium was approximately 45 times more effective than the commercial medium in terms of the number of cultivatable bacteria per unit price. The spores were then powdered via a spray-drying process to produce a spore powder with a spore count of 2.0 ± 0.7 × 109 CFU/g. The AK13 spore powder was mixed with cement paste, yeast extract, calcium lactate, and water. The yeast extract and calcium lactate generated the highest CFU/ml for AK13 at a 0.4:0.4 ratio compared to 0.4:0.25 (the original ratio of the B4 medium) and 0.4:0.8. Twenty-eight days after the spores were mixed into the mortar, the number of vegetative cells and spores of the AK13 strain had reached 106 CFU/g within the mortar. Cracks in the mortar under 0.29 mm were healed in 14 days. Calcium carbonate precipitation was observed on the crack surface. The mortar containing the spore powder was thus concluded to be effective in terms of healing micro-cracks.

Residual Stress and Elastic Modulus of Y2O3 Coating Deposited by EB-PVD and its Effects on Surface Crack Formation

  • Kim, Dae-Min;Han, Yoon-Soo;Kim, Seongwon;Oh, Yoon-Suk;Lim, Dae-Soon;Kim, Hyung-Tae;Lee, Sung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.410-416
    • /
    • 2015
  • Recently, a new $Y_2O_3$ coating deposited using the EB-PVD method has been developed for erosion resistant applications in fluorocarbon plasma environments. In this study, surface crack formation in the $Y_2O_3$ coating has been analyzed in terms of residual stress and elastic modulus. The coating, deposited on silicon substrate at temperatures higher than $600^{\circ}C$, showed itself to be sound, without surface cracks. When the residual stress of the coating was measured using the Stoney formula, it was found to be considerably lower than the value calculated using the elastic modulus and thermal expansion coefficient of bulk $Y_2O_3$. In addition, amorphous $SiO_2$ and crystalline $Al_2O_3$ coatings were similarly prepared and their residual stresses were compared to the calculated values. From nano-indentation measurement, the elastic modulus of the $Y_2O_3$ coating in the direction parallel to the coating surface was found to be lower than that in the normal direction. The lower modulus in the parallel direction was confirmed independently using the load-deflection curves of a micro-cantilever made of $Y_2O_3$ coating and from the average residual stress-temperature curve of the coated sample. The elastic modulus in these experiments was around 33 ~ 35 GPa, which is much lower than that of a sintered bulk sample. Thus, this low elastic modulus, which may come from the columnar feather-like structure of the coating, contributed to decreasing the average residual tensile stress. Finally, in terms of toughness and thermal cycling stability, the implications of the lowered elastic modulus are discussed.

A Study on Analysis Technique for Chloride Penetration in Cracked Concrete under Combined Deterioration (복합열화에 노출된 균열부 콘크리트 내의 염화물 침투 해석 기법에 대한 연구)

  • Kwon, Seung-Jun;Song, Ha-Won;Byun, Keun-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.359-366
    • /
    • 2007
  • Recently, analysis researches on durability are focused on chloride attack and carbonation due to increased social and engineering significance. Generally, chloride penetration and carbonation occur simultaneously except for in submerged condition and chloride behavior in carbonated concrete is evaluated to be different from that in normal concrete. Furthermore, if unavoidable crack occurs in concrete, it influences not only single attack but also coupled deterioration more severely. This is a study on analysis technique with system dynamics for chloride penetration in concrete structures exposed to coupled chloride attack and carbonation through chloride diffusion, permeation, and carbonation reaction. For the purpose, a modeling for chloride behavior considering diffusion and permeation is performed through previous models for early-aged concrete such as MCHHM (multi component hydration heat model) and MPSFM (micro pore structure formation). Then model for combined deterioration is developed considering changed characteristics such as pore distribution, saturation and dissociation of bound chloride content under carbonation. The developed model is verified through comparison with previous experimental data. Additionally, simulation for combined deterioration in cracked concrete is carried out through utilizing previously developed models for chloride penetration and carbonation in cracked concrete. From the simulated results, CCTZ (chloride-carbonation transition zone) for evaluating combined deterioration is proposed. It is numerically verified that concrete with slag has better resistance to combined deterioration than concrete with OPC in sound and cracked concrete.

Study on the Crack and Thermal Degradation of GFRP for UPE Gelcoat Coated Underground Pipes Under the High Temperature Water-Immersion Environment (고온 수침 환경에서 UPE 겔코트 코팅된 지중 매설 파이프용 GFRP의 열화 및 크랙 발생 특성에 관한 연구)

  • Kim, Daehoon;Eom, Jaewon;Ko, Youngjong;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.169-177
    • /
    • 2018
  • Glass fiber reinforced polyester (GFRP) composites are widely used as structural materials in harsh environment such as underground pipes, tanks and boat hulls, which requires long-term water resistance. Especially, these materials might be damaged due to delamination between gelcoat and composites through an osmotic process when they are immersed in water. In this study, GFRP laminates were prepared by surface treatment of UPE (unsaturated polyester) gelcoat by vacuum infusion process to improve the durability of composite materials used in underground pipes. The composite surface coated with gelcoat was examined for surface defects, cracking, and hardness change characteristics in water-immersion environments (different temperatures of $60^{\circ}C$, $75^{\circ}C$, and $85^{\circ}C$). The penetration depth of cracks was investigated by micro CT imaging according to water immersion temperature. It was confirmed that cracks developed into the composites material at $75^{\circ}C$ and $85^{\circ}C$ causing loss of durability of the materials. The point at which the initial crack initiated was defined as the failure time and the life expectancy at $23^{\circ}C$ was measured using the Arrhenius equation. The results from this study is expected to be applied to reliability evaluation of various industrial fields where gelcoat is applied such as civil engineering, construction, and marine industry.

Examination for Controlling Chloride Penetration of Concrete through Micro-Cracks with Surface Treatment System (표면도장공법을 적용한 미세균열 콘크리트의 염소이온 침투 제어 특성)

  • Yoon, In-Seok;Chae, Gyu-Bong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.729-735
    • /
    • 2008
  • For well-constructed concrete, its service life is a long period and it has an enough durability performance. For cracked concrete, however, it is clear that cracks should be a preferential channel for the penetration of aggressive substance such as chloride ions accoding to author's previous researches. Even though crack width can be reduced due to the high reinforcement ratio, the question is to which extend these cracks may jeopardize the durability of cracked concrete. If the size of crack is small, surface treatment system can be considered as one of the best options to extend the service life of concrete structures exposed to marine environment simply in terms of cost effectiveness versus durability performance. Thus, it should be decided to undertake an experimental study to deal with the effect of different types of surface treatment system, which are expected to seal the concrete and the cracks to chloride-induced corrosion in particular. In this study, it is examined the effect of surfaced treated systems such as penetrant, coating, and their combination on chloride penetration through microcracks. Experimental results showed that penetrant can't cure cracks. However, coating and combined treatment can prohibit chloride penetration through cracks upto 0.06 mm, 0.08 mm, respectively.

Evaluation of Defects of Thermal Barrier Coatings by Thermal Shock Test Using Eddy Current Testing (열차폐 코팅층의 고온 열충격 시험후 ECT를 이용한 결함 평가)

  • Heo, Tae-Hoon;Cho, Youn-Ho;Lee, Joon-Hyun;Oh, Jeong-Seok;Lee, Koo-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.450-457
    • /
    • 2009
  • Periodical thermal shock can introduce defects in thermal barrier coating made by layers of CoNiCrAlY bond coating(BC) and $ZrO_2-8wt%Y_2O_3$ ceramic top coating(TC) on Inconel-738 substrate using plasma spraying. Thermal shock test is performed by severe condition that is to heat until $1000^{\circ}C$ and cool until $20^{\circ}C$. As the number of cycle is increased, the fatigue by thermal shock is also increased. After test, the micro-structures and mechanical characteristics of thermal barrier coating were investigated by SEM, XRD. The TGO layer of $Al_2O_3$ is formed between BC and TC by periodical thermal shock test, and its change in thickness is inspected by eddy current test(ECT). By ECT test, it is shown that TGO and micro-crack can be detected and it is possible to predict the life of thermal barrier coating.

Fabrication of SiCp/Al Alloy Composites by In-situ Vacuum Hot Press Process (In-situ Vacuum Hot Press 공정을 이용한 SiCp/Al 복합재료의 제조)

  • Choe, Se-Won;Hong, Seong-Gil;Kim, Yeong-Man;Jang, Si-Yeong;Gang, Chang-Seok
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.590-598
    • /
    • 2001
  • SiCp/pure Al and SiCp/2024Al MMCs were fabricated by in-situ VHP process designed specially just in this study which is composed of the vacuum hot press at range from R.T. to $500^{\circ}C$ and the continuous extrusion without canning process at $520^{\circ}C$. It was investigated the effect of SiC particle size, volume fraction and extrusion ratio on the tensile properties and micro structure in auf composites. In case of the 10:1 extrusion ratio, but SiCp/pure Al and SiCp/2024Al composites were shown a sound appearance and a good micro structure without crack of SiCp as well as uniform distribution of SiCp. However, in case of the 16:1 extrusion ratio, the number of cracked SiC particles more than increased in a higher volume fraction composite and 2024Al matrix composite compared with pure Al matrix one. The tensile strength of the composites reinforced smaller SiCp was higher than that of the bigger SiCp reinforced in same volume fraction and extrusion ratio.

  • PDF

Characterization of GaN epitaxial layer grown on nano-patterned Si(111) substrate using Pt metal-mask (Pt 금속마스크를 이용하여 제작한 나노패턴 Si(111) 기판위에 성장한 GaN 박막 특성)

  • Kim, Jong-Ock;Lim, Kee-Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.67-71
    • /
    • 2014
  • An attempt to grow high quality GaN on silicon substrate using metal organic chemical vapor deposition (MOCVD), herein GaN epitaxial layers were grown on various Si(111) substrates. Thin Platinum layer was deposited on Si(111) substrate using sputtering, followed by thermal annealing to form Pt nano-clusters which act as masking layer during dry-etched with inductively coupled plasma-reactive ion etching to generate nano-patterned Si(111) substrate. In addition, micro-patterned Si(111) substrate with circle shape was also fabricated by using conventional photo-lithography technique. GaN epitaxial layers were subsequently grown on micro-, nano-patterned and conventional Si (111) substrate under identical growth conditions for comparison. The GaN layer grown on nano-patterned Si (111) substrate shows the lowest crack density with mirror-like surface morphology. The FWHM values of XRD rocking curve measured from symmetry (002) and asymmetry (102) planes are 576 arcsec and 828 arcsec, respectively. To corroborate an enhancement of the growth quality, the FWHM value achieved from the photoluminescence spectra also shows the lowest value (46.5 meV) as compare to other grown samples.

$TiO_2$ Thin Film Patterning on Modified Silicon Surfaces by MOCVD and Microcontact Printing Method

  • 강병창;이종현;정덕영;이순보;부진효
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.77-77
    • /
    • 2000
  • Titanium oxide (TiO2) thin films have valuable properties such as a high refractive index, excellent transmittance in the visible and near-IR frequency, and high chemical stability. Therefore it is extensively used in anti-reflection coating, sensor, and photocatalysis as electrical and optical applications. Specially, TiO2 have a high dielectric constant of 180 along the c axis and 90 along the a axis, so it is highlighted in fabricating dielectric capacitors in micro electronic devices. A variety of methods have been used to produce patterned self-assembled monolayers (SAMs), including microcontact printing ($\mu$CP), UV-photolithotgraphy, e-beam lithography, scanned-probe based micro-machining, and atom-lithography. Above all, thin film fabrication on $\mu$CP modified surface is a potentially low-cost, high-throughput method, because it does not require expensive photolithographic equipment, and it produce micrometer scale patterns in thin film materials. The patterned SAMs were used as thin resists, to transfer patterns onto thin films either by chemical etching or by selective deposition. In this study, we deposited TiO2 thin films on Si (1000 substrateds using titanium (IV) isopropoxide ([Ti(O(C3H7)4)] ; TIP as a single molecular precursor at deposition temperature in the range of 300-$700^{\circ}C$ without any carrier and bubbler gas. Crack-free, highly oriented TiO2 polycrystalline thin films with anatase phase and stoichimetric ratio of Ti and O were successfully deposited on Si(100) at temperature as low as 50$0^{\circ}C$. XRD and TED data showed that below 50$0^{\circ}C$, the TiO2 thin films were dominantly grown on Si(100) surfaces in the [211] direction, whereas with increasing the deposition temperature to $700^{\circ}C$, the main films growth direction was changed to be [200]. Two distinct growth behaviors were observed from the Arhenius plots. In addition to deposition of THe TiO2 thin films on Si(100) substrates, patterning of TiO2 thin films was also performed at grown temperature in the range of 300-50$0^{\circ}C$ by MOCVD onto the Si(100) substrates of which surface was modified by organic thin film template. The organic thin film of SAm is obtained by the $\mu$CP method. Alpha-step profile and optical microscope images showed that the boundaries between SAMs areas and selectively deposited TiO2 thin film areas are very definite and sharp. Capacitance - Voltage measurements made on TiO2 films gave a dielectric constant of 29, suggesting a possibility of electronic material applications.

  • PDF