• Title/Summary/Keyword: micro coil

Search Result 133, Processing Time 0.03 seconds

Flow Visualization of Magnetic Particles under the external magnetic field in bubbly flow using Single Plane Illumination Microscopy - MicroPIV (Single Plane Illumination Microscopy - MicroPIV를 이용한 버블 유동에서 외부 자계 영향을 받는 자성입자 가시화)

  • Lee, Changje;Cho, Gyeong-rae;Lee, Sangyoup
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.36-42
    • /
    • 2021
  • This study measured the velocity of magnetic particles inside the power generation using external heat sources. Single Plane Illumination Microscopy (SPIM) was used to measure magnetic particles that are simultaneously affected by bubbly flow and magnetic field. It has the advantage of reducing errors due to particle superposition by illuminating the thin light sheet. The hydraulic diameter of the power generation is 3mm. Its surface is covered with a coil with a diameter of 0.3 mm. The average diameter of a magnetic particle is 200nm. The excitation and emission wavelengths are 530 and 650nm, respectively. In order to find out the flow characteristics, a total of four velocity fields were calculated in wide and narrow gap air bubbles, between the wall and the air bubble and just below the air bubble. Magnetic particles showed up to 8.59% velocity reduction in the wide gap between air bubbles due to external magnetic field.

Numerical and Experimental Analysis of Micro Gas Turbine Heat Transfer Effect (초소형 가스터빈엔진 열전달 현상의 수치적 및 실험적 연구)

  • Seo, Junhyuk;Kwon, Kilsung;Choi, Ju Chan;Baek, Jehyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.153-159
    • /
    • 2015
  • In this study, a 2-W micro-gas turbine engine was designed using micro-electro-mechanical systems (MEMS) technology, and analytical and experimental investigations of its potential under actual combustion conditions were performed. An ultra-micro-gas turbine contains a turbo-charger, combustor, and generator. A compressor, turbine blade, and generator coil were manufactured using MEMS technology. The shaft was supported by a precision computer numerical control machined air bearing, and a permanent magnet was attached to the end of the shaft for generation. An analysis found that the cooling effect of the air bearing and compressor was sufficient to cover the combustor heat, which was verified in an actual experiment.

Magnetic Micro-Deflector for a Microcolumn System (초소형 전자칼럼을 위한 마이크로 자기장 디플렉터 연구)

  • Kim, Young-Chul;Kim, Dae-Wook;Ahn, Seung-Joon;Kim, Ho-Seob;Park, Seong-Soon;Park, Kyoung-Wan;Hwang, Nam-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.6
    • /
    • pp.426-431
    • /
    • 2007
  • We have fabricated a magnetic micro-deflector for a microcolumn system and tested its performance by operating it in the low energy region. The micro-deflector is composed of Cu coils around cylindrical cores with $500{\mu}m$ diameter. The diameter of the Cu coil itself is $100{\mu}m$. Two pairs of deflectors designed for a 2-dimensional scan, that is X and Y deflection, are fixed on an insulating plate. The low power performance of a magnetic micro-deflector attached to a microcolumn system has been tested and the magnitude of deflection is measured to be ${\sim}100{\mu}m/A$, which offers the possibility for practical applications of the magnetic micro-deflector.

The Design and Performance Test of Miniaturized Sled Type Dual-Servo Actuator (초소형 Sled-type 이중 서보 엑추에이터 설계 및 특성 분석)

  • 강동우;김기현;정재화;권대갑
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.357-360
    • /
    • 2002
  • Nowadays, the improvement and development of Multi-media, information and communication technology are rapidly processed. And many products, for example, digital camera, digital camcorder, and PDA, are used for them. They need large data storage capacity and small size, light storage system. Due to that, many studies and researches in data storage system have been carried out. Especially, micro drive system was presented by IBM.(1) However, its system is expensive and uneasy to be portable. In ODD technologies, 1 inch drive system is not yet or in processing status.(2) If to be possible and to be come up, it is cheap than HDD system and easy to transfer information. In this paper, a miniaturized actuator(about linch) is designed and tested for ODD system. Specially, it is adapted for NFR(Near-field Recoding) system using SIL(Solid Immersion Lens). It is the dual-servo actuator which consists of a coarse actuator and fine actuator. Its actuating force generation method is VCM(Voice Ceil Motor). The fine actuator has 4-wire suspensions and bobbin wrapped by coil and includes focusing motion as well as tracking motion. The coarse actuator has an actuating coil and V-grooved guide mechanism. Also, the characteristics of the designed actuator is estimated by sine-swept mode and LDV(Laser Doppler Vibro-meter).

  • PDF

Three-Dimensional Finite Element Analysis of the Induction Heating Procedure of an Injection Mold (고주파유도 급속 금형가열 과정의 3차원 유한요소해석)

  • Sohn, Dong-Hwi;Seo, Young-Soo;Park, Keun
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.152-159
    • /
    • 2010
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a non-contact manner, and has been recently applied to the injection molding due to its capability of rapid heating and cooling of mold surface. The present study covers a three-dimensional finite element analysis to investigate heating efficiency and structural safety of the induction heating process of an injection mold. To simulate the induction heating process, an integrated simulation method is proposed by effectively connecting an electromagnetic field analysis, a transient heat transfer analysis and a thermal stress analysis. The estimated temperature changes are compared with experimental measurements for various types of induction coil, from which heating efficiency according to the coil shape is discussed. The resulting thermal stress distributions of the mold plate for various types of induction coils are also evaluated and discussed in terms of the structural safety.

Fabrication of RFID TAG Micro Pattern Using Ultrasonic Convergency Vibration (초음파 융합진동을 이용한 미세패턴성형 기술 연구)

  • Lee, Bong-Gu
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.1
    • /
    • pp.175-180
    • /
    • 2020
  • In this study, we developed a micropattern technology in the shape of RFID TAG antenna using ultrasonic micropattern manufacturing system developed to enable micropattern technology. The ultrasonic tool horn in longitudinal vibration mode was installed in the micropattern manufacturing system to develop the ultrasonic press technology for the micropattern antenna shape of the RFID TAG antenna shape on the insulating sheet surface. The ultrasonic shaping technology was manufactured by applying the resonance design technique to a 60kHz tool horn, and by using the micropattern manufacturing system, the coil wire having a thickness of 25㎛ can be ultrasonically press-molded on an insulating sheet of 200㎛ or less. In ultrasonic press technology, the antenna shape having a minimum line width of 150㎛ could be molded without disconnection, peeling, or twisting of the coil wire.

A Wireless Intraocular Pressure Sensor with Variable Inductance Using a Ferrite Material

  • Kang, Byungjoo;Hwang, Hoyong;Lee, Soo Hyun;Kang, Ji Yoon;Park, Joung-Hu;Seo, Chulhun;Park, Changkun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.355-360
    • /
    • 2013
  • A wireless intraocular (IOP) pressure sensor based on micro electro mechanical system (MEMS) technology is proposed. The proposed IOP sensor uses variable inductance according to the external pressure. The proposed sensor is composed of two flexible membranes: a ferrite bottom part, an inductor, and a capacitor. The inductance of the sensor varies according to the external pressure. The resonance frequency of the sensor is also varied, and this frequency is detected using an external coil. The external coil is designed with an FR-4 printed circuit board. The feasibility of the proposed sensor structure using variable inductance to detect the external pressure is successfully demonstrated.

Development of Small Loading and Positioning Device using VCM (보이스 코일 모터를 이용한 미세 하중 및 위치 결정 기구의 개발)

  • 권기환;오승환;조남규;윤준용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.64-72
    • /
    • 2003
  • This paper presents a small loading and positioning device using VCM (voice coil motor). The developed device consists of a VCM-based linear actuating system, a capacitance displacement sensor and a cantilever deflection sensing system. The trust force of the VCM proportional to applied current moves the column supported on two pairs of parallel leaf springs. The infinitesimal displacement of moved column is detected by capacitance displacement sensor with a resolution of 0.1nm and a repeatability of 1nm. Also, a micro cantilever with known stiffness (200N/m), which is mounted on the end of the column, is used as a force sensor to detect the load applied to a specimen. After the cantilever contacts with the specimen, the deflection of cantilever and the load applied to the specimen are measured by using an optical lever system which consists of a diode laser, a mirror and a PSD (position sensitive detector). In this paper, an experimental system was constructed and its actuator and sensing parts were tested and calibrated. Also, the constructed system was applied to the indentation experiment and the load-displacement curve of aluminum was obtained. Experimental results showed that the developed device can be applied for performing nano indentation.

Design of radiation detection circuit for gamma column scanning (자동 감마 증류탑 검사 장치를 위한 방사선 계측장치 설계)

  • Kim, Jong-Beom;Jeong, Seong-Hui
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.612-615
    • /
    • 2003
  • In this paper, a design of radiation detector for gamma column scanner is introduced. Distillation column is important unit in Petro-chemical industries, and its on-line diagnose is very important. To get density profile measured by the radiation transmitted through column is well method for on-line diagnose as gamma scanning. For this purpose radiation detection circuit, radiation source and mechanical system for moving source and detector are required. Conventional radiation detection circuit for this application is sensitive to electric noise because of interface between the radiation circuit and the controller for mechanical system. The radiation detection system introduced here is using loop coil instead of slip ring to remove contact noise. Radiation detection system designed here for gamma scanning consist of BGO detector, high voltage circuit, PHA circuit and FSK modem. The BGO detector is used as radiation sensor, high voltage circuit and peak height analysis circuit is essential to process the signal generated from BGO detector. Micro controller convert measured data into ASCII data. FSK modem transmit ASCII data. Transmitted ASCH data is picked up in antenna coil and processed for combined function with mechanical system. This method gives good result by isolating the controlling circuit of mechanical system from radiation detecting circuit which is sensitive to noise.

  • PDF

Design of Electromagnetically Driven Micro Scanning Mirror for Laser Animation System (레이저 디스플레이를 위한 전자력 구동 스캐닝 미러의 설계)

  • Lee, Kyoung-Gun;Jang, Yun-Ho;Yoo, Byung-Wook;Jin, Joo-Young;Lim, Yong-Geun;Kim, Yong-Kweon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.578-585
    • /
    • 2009
  • In this paper, we present the design of an electromagnetic scanning mirror with torsional springs. The scanning mirror consisting of torsional springs and electromagnetic coils was designed for the applications of laser animation systems. We analyzed and optimized three types of torsional springs, namely, straight beam springs (SBS), classic serpentine springs (CSS), and rotated serpentine springs (RSS). The torsional springs were analyzed in terms of electrical resistance, fabrication error tolerance, and resonance mode separation of each type using analytical formula or numerical analysis. The RSS has advantages over the others as follows: 1) A low resistance of conductors, 2) wide resonance mode separation, 3) strong fabrication error tolerance, 4) a small footprint. The double-layer coils were chosen instead of single-layer coils with respect to electromagnetic forces. It resulted in lower power consumption. The geometry of the scanning mirror was optimized by calculations; RSS turn was 12 and the width of double-layer coil was $100{\mu}m$, respectively. When the static rotational angle is 5 degrees, the power consumption of the mirror plate was calculated to be 9.35 mW since the resistance of the coil part and a current is $122{\Omega}$ and 8.75 mA, respectively. The power consumption of full device including the mirror plate and torsional springs was calculated to be 9.63 mW.