• Title/Summary/Keyword: micro Genetic Algorithm

Search Result 75, Processing Time 0.022 seconds

Multi-objective robust optimization method for the modified epoxy resin sheet molding compounds of the impeller

  • Qu, Xiaozhang;Liu, Guiping;Duan, Shuyong;Yang, Jichu
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.179-190
    • /
    • 2016
  • A kind of modified epoxy resin sheet molding compounds of the impeller has been designed. Through the test, the non-metal impeller has a better environmental aging performance, but must do the waterproof processing design. In order to improve the stability of the impeller vibration design, the influence of uncertainty factors is considered, and a multi-objective robust optimization method is proposed to reduce the weight of the impeller. Firstly, based on the fluid-structure interaction, the analysis model of the impeller vibration is constructed. Secondly, the optimal approximate model of the impeller is constructed by using the Latin hypercube and radial basis function, and the fitting and optimization accuracy of the approximate model is improved by increasing the sample points. Finally, the micro multi-objective genetic algorithm is applied to the robust optimization of approximate model, and the Monte Carlo simulation and Sobol sampling techniques are used for reliability analysis. By comparing the results of the deterministic, different sigma levels and different materials, the multi-objective optimization of the SMC molding impeller can meet the requirements of engineering stability and lightweight. And the effectiveness of the proposed multi-objective robust optimization method is verified by the error analysis. After the SMC molding and the robust optimization of the impeller, the optimized rate reached 42.5%, which greatly improved the economic benefit, and greatly reduce the vibration of the ventilation system.

The optimum damping retrofit for cabinet structures of NPP by μ-GA (μ-GA를 이용한 원전 캐비닛구조물의 최적감쇠보강)

  • Lee, Gye-Hee;Ha, Dong-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.1-7
    • /
    • 2005
  • The optimal seismic retrofitting of NPP(Nuclear Power Plant) cabinet structures that contain seismic category 1 relays was studied in this paper. During earthquake event, the failure modes of relays are not appeared in form of structural failure, but are appeared in form of contact chatter of relay. Therefore, the retrofitting of cabinet has to be aimed at the reducing of the structural response, such as acceleration. In this study, the optimal characteristic values of dampers were searched by ${\mu}$-GA (micro-Genetic Algorithm) scheme for several installation patterns. To keep accuracy and efficiency of analysis, the structural models of cabinet were considered as a frame structure. The responses of structure were obtained inform of acceleration response spectra derived from the results of nonlinear time history analysis including damping nonlinearity. The objective function of the optimum procedure was constructed based on the maximum ratio of maximum spectral value and target GERS (General Equipment Ruggedness Spectra). The results show the good improvements of fitness for adequate retrofitting pattern. Especially, the improvements of fitness were remarkable when the values of damping exponents are low.

Hierarchical Cellular Network Design with Channel Allocation (채널할당을 고려한 다중계층 셀룰러 네트워크 설계)

  • Park, Hyun-Soo;Lee, Sang-Heon
    • Journal of the military operations research society of Korea
    • /
    • v.34 no.2
    • /
    • pp.63-77
    • /
    • 2008
  • With the limited frequency spectrum and an increasing demand for cellular communication services, the problem of channel assignment becomes increasingly important. However, finding a conflict free channel assignment with the minimum channel span is NP hard. The innovations are cellular concept, dynamic channel assignment and hierarchical network design. We consider the frequency assignment problem and the base station placement simultaneously. Our model takes the candidate locations emanating from this process and the cost of assigning a frequency, operating and maintaining equipment as an input. Hierarchical network design using genetic algorithm is the first three-tier (Macro, Micro, Pico) model. We increase the reality through applying to Electromagnetic Compatibility Constraints. Computational experiments on 72 problem instances which have $15{\sim}40$ candidate locations demonstrate the computational viability of our procedure. The result of experiments increases the reality and covers 90% of the demand.

Gate Locations Optimization of an Automotive Instrument Panel for Minimizing Cavity Pressure (금형 내부 압력 최소화를 위한 자동차 인스트루먼트 패널의 게이트 위치 최적화)

  • Cho, Sung-Bin;Park, Chang-Hyun;Pyo, Byung-Gi;Cho, Dong-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.648-653
    • /
    • 2012
  • Cavity pressure, an important factor in injection molding process, should be minimized to enhance injection molding quality. In this study, we decided the locations of valve gates to minimize the maximum cavity pressure. To solve this problem, we integrated MAPS-3D (Mold Analysis and Plastic Solution-3Dimension), a commercial injection molding analysis CAE tool, using the file parsing method of PIAnO (Process Integration, Automation and Optimization) as a commercial process integration and design optimization tool. In order to reduce the computational time for obtaining the optimal design solution, we performed an approximate optimization using a meta-model that replaced expensive computer simulations. To generate the meta-model, computer simulations were performed at the design points selected using the optimal Latin hypercube design as an experimental design. Then, we used micro genetic algorithm equipped in PIAnO to obtain the optimal design solution. Using the proposed design approach, the maximum cavity pressure was reduced by 17.3% compared to the initial one, which clearly showed the validity of the proposed design approach.

Artificial Life Algorithm for Functions Optimization (함수 최적화를 위한 인공생명 알고리듬)

  • Yang, Bo-Seok;Lee, Yun-Hui;Choe, Byeong-Geun;Kim, Dong-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.173-181
    • /
    • 2001
  • This paper presents an artificial life algorithm which is remarkable in the area of engineering for functions optimization. As artificial life organisms have a sensing system, they can find the resource which they want to find and metabolize. And the characteristics of artificial life are emergence and dynamic interaction with environment. In other words, the micro-interaction with each other in the artificial lifes group results in emergent colonization in the whole system. In this paper, therefore, artificial life algorithm by using above characteristics is employed into functions optimization. The optimizing ability and convergent characteristics of this proposed algorithm is verified by using three test functions. The numerical results also show that the proposed algorithm is superior to genetic algorithms and immune algorithms for the multimodal functions.

The Study of a Population and Generation Parameter's Characteristics on PID Gain Tuning with GA in Wide Solution Area (넓은 해영역에서의 GA를 이용한 PID 제어기 게인 조정에 따른 개체수와 세대수 파라미터의 특징에 관한 연구)

  • Jeong, Hwang Hun
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.60-65
    • /
    • 2017
  • A GA is one of the best method to find optimal value in searching area. A GA is driven by probabilistic selection that based on the survival of the fittest. So this algorithm need a huge solving time even if it can be used lots of optimizing problem such as structural design, machine learning, system's identification and so on. This GA's characteristic constrain the program to drive offline. Some studies try to use this algorithm on online or reduce the GA's running time with parallel GA or micro GA. Unfortunately these studies still didn't reduce amount of fitness solving. If the chromosome was imported to the system, it affected system's stability. And when the control system uses online GA, it also doesn't have enough learning time. In this study, try to find stability criterion to reduce the chromosome's affection and find the characteristic of the number of population and generation when GA was driven into the wide searching area.

Optimization Design of Hydrofoil Shape and Flapping Motion in AUV(Autonomous Underwater Vehicle) (플래핑 운동을 적용한 자율무인잠수정(AUV)의 날개형상 및 운동 최적설계)

  • Kim, Il-Hwan;Choi, Jung-Sun;Park, Kyung-Hyun;Lee, Do-Hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.24-31
    • /
    • 2013
  • The motion of living organisms such as birds, fishes, and insects, has been analyzed for the purpose of the design of MAV(Micro Air Vehicle) and NAV(Nano Air Vehicle). In this research, natural motion was considered to be applied to the determination of the geometry and motion of AUV(Autonomous Underwater Vehicle). The flapping motion of a number of hydrofoil shapes in AUV was studied, and at the same time, the optimization of the hydrofoil shape and flapping motion was executed that allow the highest thrust and efficiency. The harmonic motion of plunging and pitching of NACA 4 digit series models, was used for the numerical analysis. The meta model was made by using the kriging method in Optimization method and the experimental points of 49 were extracted for the OA(Orthogonal array) in DOE(Design of experiments). Parametric study using this experimental points was conducted and the results were applied to MGA(Micro Genetic Algorithm). The flow simulation model was validated to be an appropriate tool by comparing with experimental data and the optimized shape and motion of AUV was turned out to produce highest thrust and efficiency.

A study on the optimal control of Long Stroke Fast Tool Servo Systems (장거리 구동용 FTS 의 최적 제어에 관한 연구)

  • 이상호;이찬홍;김갑순
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.818-821
    • /
    • 2004
  • With a rapid development in the area of micro and ultra precision technology, the micro surface machining of small size parts are explosively increased. Especially, to improve efficiency of various beams in lens and reflector, non-rotational symmetric form and several mm level heights changeable surface can be machined at a time. These geometric complex 3D surface cannot be machined by general short stroke FTS. The long stroke FTS if firmly needed to move directly several mm and have nm level positioning accuracy for the complex surface form. The long stroke FTS used linear motors to drive moving unit long and fine, aero static bearings to decrease friction and moving errors in guide way, optical linear scale with nm level resolution to measure position of FTS. Furthermore, to increase the performance of acceleration of FTS, the light material, such as AL is used for the structure and the high stiffness box type structure is selected. In this paper, the genetic algorithm approach is described to determine a set of design parameters for auto tuning. The authors have attempted to model the design problem with the objective of minimizing the error, such as variable pattern change. This method can give the better alternative than existing other method.

  • PDF

Estimation of the Moving Load Velocity Using Micro Genetic Algorithm (마이크로 유전 알고리즘을 이용한 교통하중의 속도추정)

  • Tak, Moon-Ho;Noh, Myung-Hyun;Park, Tae-Hyo;Park, In-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.292-295
    • /
    • 2009
  • 본 논문에서는 평판구조물의 정적 및 동적해석에 사용할 목적으로 성능이 향상된 평판유한요소를 제시하였다. 이 요소는 비적합변위형과 선택적 감차적분방법 그리고 대체전단변형률장을 복합적으로 적용하여 각각의 장점들을 포함하는 향상된 거동을 보여주고 있다. 또한 비적합변위형의 적용으로 발생되는 조각시험의 실패 문제점을 해결하기 위하여 직접수정법을 평판유한요소의 개선에 사용하였다. 대표적인 검증문제에 대한 수치해석작업을 통하여 본 연구에서 개발한 요소는 가상적인 제로에너지모드 및 전단잠김현상의 발생과 같은 문제를 나타내지 않음을 알 수 있었다. 특히 찌그러진 형상으로 모형화 한 경우에 있어서도 전단잠김현상이 발생하지 않았다. 본 연구에서 수행한 동적반응해석 시험에 있어서도 이론해와 잘 일치하는 결과를 보여주었다.

  • PDF

Optimum Design of Truss Structures with Pretension Considering Bucking Constraint (프리텐션을 받는 트러스 구조물의 좌굴을 고려한 최적설계)

  • Kim, Yeon-Tae;Kim, Dae-Hwan;Lee, Jae-Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.197-208
    • /
    • 2010
  • An under-tension system is frequently employed for large-span structures to reduce the deflection and member size. In this study, a microgenetic algorithm was used to find the optimum cross-section of truss structures with an undertension cable under transverse loading. Maximum deflection, allowable stress, and buckling were considered constraints. The proposed approach was verified using a 10-bar truss sample that shows good agreement with the previous results. In the numerical results, minimum-weight design of the under-tension structure was performed for various magnitudes of pretension.