• Title/Summary/Keyword: micro/nano tubes

Search Result 16, Processing Time 0.026 seconds

Convective heat transfer of MWCNT / HT-B Oil nanofluid inside micro-fin helical tubes under uniform wall temperature condition

  • Kazemia, M.H.;Akhavan-Behabadi, M.A.;Nasr, M.
    • Advances in nano research
    • /
    • v.2 no.2
    • /
    • pp.99-109
    • /
    • 2014
  • Experiments are performed to investigate the single-phase flow heat transfer augmentation of MWCNT/HT-B Oil in both smooth and micro-fin helical tubes with constant wall temperature. The tests in laminar regime were carried out in helical tubes with three curvature ratios of 2R/d=22.1, 26.3 and 30.4. Flow Reynolds number varied from 170 to 1800 resulting in laminar flow regime. The effect of some parameters such as the nanoparticles concentration, the dimensionless curvature radius (2R/d) and the Reynolds number on heat transfer was investigated for the laminar flow regime. The weight fraction of nanoparticles in base fluid was less than 0.4%. Within the applied range of Reynolds number, results indicated that for smooth helical tube the addition of nanoparticles to the base fluid enhanced heat transfer remarkably. However, compared to the smooth helical tube, the average heat transfer augmentation ratio for finned tube was small and about 17%. Also, by increasing the weight fraction of nanoparticles in micro-fin helical tubes, no substantial changes were observed in the rate of heat transfer enhancement.

FE analysis of Extrusion Process and Estimation of welding strength for Micro Multi Cell Tube with Serration (세레이션형 미세 멀티셀 튜브 압출 및 접합강도 평가)

  • Lee Jung Min;Kim Byung Min;Jo Hyung Ho;Kang Chung Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.49-59
    • /
    • 2005
  • This paper describes a development of the extrusion process and estimation of the weldability for multi cell tubes used to cooling system of automobiles. A study on extrusion process is performed through the 3D FE simulation in non-steady state and extrusion experimentation. Also, nano-indentation test is employed to estimate the weldability of tubes. Especially, An evaluation of the weldability using the nano-indentation is accomplished as compared with nano-hardness in welded part and in the others. Finally, the pattern of the mandrel defection is investigated according to shapes of the porthole and/or chamber.

Conventional problem solving on the linear and nonlinear buckling of truncated conical functionally graded imperfect micro-tubes

  • Linyun, Zhou
    • Advances in nano research
    • /
    • v.13 no.6
    • /
    • pp.545-559
    • /
    • 2022
  • This paper studies the buckling response of nonuniform functionally graded micro-sized tubes according to the high-order tube theory (HOTT) and classical beam theory (CBT) in addition to nonlocal strain gradient theory. The microtube is made of axially functionally graded material (AFGM). Both inner and outer tube radiuses are changed along the tube length; the microtube is the truncated conical type of tube. The nonlinear partial differential (PD) the formulations are obtained on the basis of the energy conservation method. Then, the linear and nonlinear results are computed via a powerful numerical approach. Finally, the impact of various parameters on the stability of axially functionally graded (AFG) microtube regarding the buckling analysis is discussed.

WETTABILITY AND DRUG DELIVERY OF FUNCTIONALLY GRADED NANO-MICRO POROUS TITANIUM SURFACE

  • Yun, Kwi-Dug;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.307-319
    • /
    • 2008
  • STATEMENT OF PROBLEM: It is known that an anodic oxidation technique, one of the methods for the implant surface treatment, remarkably increased surface area, enhanced wettability and accelerated the initial bone healing. Purpose: This study was performed to evaluate the wettability of anodized titanium surface which has a nanotubular structure, to assess osseointegration after the placement of implant with nano-size tubes on tibia of rats and to analyze quantitatively transferable rhBMP-2 on each surface. MATERIAL AND METHOD: Four different kinds of surface-treated titanium discs (polished (machined surface) group, micro (blasting surface) group, nano (anodizedmachined surface) group, and nano-micro (anodized-blasting surface) group) were fabricated (n=10). Three different media were chosen to measure the surface contact angles; distilled water, plasma and rhBMP-2 solution. After a single drop (0.025 $m{\ell}$) of solution, the picture was taken with the image camera, and contact angle was measured by using image analysis system. For the test of osseointegration, 2 kinds of anodized surface (anodized-machined surface, anodized-blasting surface) implants having 2.0 mm in diameter and 5.0 mm in length inserted into the tibia of Wistar rats. After 3 weeks, tibia were harvested and the specimens were stained with hematoxylin and eosin for histological analysis. To test the possibility of drug delivery, after soaking sample groups in the concentration of 250 ng/$m{\ell}$l of rhBMP-2 for 48 hours, the excess solution of rhBMP-2 were removed. After that, they were lyophilized for 24 hours, and then the rhBMP-2 on the surface of titanium was resolved for 72 hours in PBS. All the extracted solution was analyzed by ELISA. One-way analysis of variance (ANOVA) was performed on the data. RESULTS: The wettability is improved by anodic oxidation. The best wettability was shown on the nano-micro group, and it was followed by nano group, micro group, and polished group. In the histological findings, all implants showed good healing and the new bone formation were observed along the implant surface. After 3 days, nano-micro group delivered the most amount of rhBMP-2, followed by nano group, micro group, and polished group. CONCLUSION: It indicated that anodic oxidation on blasting surface produce functionally graded nano-micro porous structure and enhance hydrophilicity of the surface and osseointegration. The findings suggest that the nano-micro porous structure could be a useful carrier of osteogenic molecules like rhBMP-2.

Microstructural behavior and mechanics of nano-modified cementitious materials

  • Archontas, Nikolaos D.;Pantazopoulou, S.J.
    • Advances in concrete construction
    • /
    • v.3 no.1
    • /
    • pp.15-37
    • /
    • 2015
  • Ongoing efforts for improved fracture toughness of engineered cementitious materials address the inherent brittleness of the binding matrix at several different levels of the material's geometric scale through the addition of various types of reinforcing fibers. Crack control is required for crack widths that cover the entire range of the grain size spectrum of the material, and this dictates the requirement of hybrid mixes combining fibers of different size (nano, micro, macro). Use of Carbon Nano-Tubes (CNT) and Carbon Nano-Fibers (CNFs) as additives is meant to extend the crack-control function down to the nanoscale where cracking is believed to initiate. In this paper the implications of enhanced toughness thus attained at the material nanostructure are explored, with reference to the global smeared constitutive properties of the material, through consistent interpretation of the reported experimental evidence regarding the behavior of engineered cementitious products to direct and indirect tension.

Ultrasonic waves in a single walled armchair carbon nanotube resting on nonlinear foundation subjected to thermal and in plane magnetic fields

  • Selvamani, Rajendran;Jayan, M. Mahaveer Sree;Ebrahimi, Farzad
    • Coupled systems mechanics
    • /
    • v.10 no.1
    • /
    • pp.39-60
    • /
    • 2021
  • The present paper is concerned with the study of nonlinear ultrasonic waves in a magneto thermo (MT) elastic armchair single-walled carbon nanotube (ASWCNT) resting on polymer matrix. The analytical formulation is developed based on Eringen's nonlocal elasticity theory to account small scale effect. After developing the formal solution of the mathematical model consisting of partial differential equations, the frequency equations have been analyzed numerically by using the nonlinear foundations supported by Winkler-Pasternak model. The solution is obtained by ultrasonic wave dispersion relations. Parametric work is carried out to scrutinize the influence of the non local scaling, magneto-mechanical loadings, foundation parameters, various boundary condition and length on the dimensionless frequency of nanotube. It is noticed that the boundary conditions, nonlocal parameter, and tube geometrical parameters have significant effects on dimensionless frequency of nano tubes. The results presented in this study can provide mechanism for the study and design of the nano devices like component of nano oscillators, micro wave absorbing, nano-electron technology and nano-electro- magneto-mechanical systems (NEMMS) that make use of the wave propagation properties of armchair single-walled carbon nanotubes embedded on polymer matrix.

Fast transport with wall slippage

  • Tang, Zhipeng;Zhang, Yongbin
    • Membrane and Water Treatment
    • /
    • v.12 no.1
    • /
    • pp.37-41
    • /
    • 2021
  • This paper presents the multiscale calculation results of the very fast volume transport in micro/nano cylindrical tubes with the wall slippage. There simultaneously occurs the adsorbed layer flow and the intermediate continuum fluid flow which are respectively on different scales. The modeled fluid is water and the tube wall is somewhat hydrophobic. The calculation shows that the power loss on the tube no more than 1.0 Watt/m can generate the wall slippage even if the fluid-tube wall interfacial shear strength is 1 MPa; The power loss on the scale 104 Watt/m produces the volume flow rate through the tube more than one hundred times higher than the classical hydrodynamic theory calculation even if the fluid-tube wall interfacial shear strength is 1 MPa. When the wall slippage occurs, the volume flow rate through the tube is in direct proportion to the power loss on the tube but in inverse proportion to the fluid-tube wall interfacial shear strength. For low interfacial shear strengths such as no more than 1 kPa, the transport in the tube appears very fast with the magnitude more than 4 orders higher than the classical calculation if the power loss on the tube is on the scale 104 Watt/m.

The Improvement of the Ionization on Micro Mass Spectrometer using Carbon Nanotube Emitter (탄소나노튜브 방출원을 통한 초소형 질량분석기의 이온화 향상)

  • Song, S.H.;Han, Kyu-Sung;Hong, Nguyen Tuan;Lee, S.I.;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.1004-1009
    • /
    • 2009
  • Recently, mass spectrometers are widely used for in-situ chemical analysis. It has rapid response and high sensitivity. In this paper, we present the fabrication and test of a cold cathode emitter for micro mass spectrometer using CNTs(Carbon nano tubes). The CNTs have good mechanical, electrical and chemical characteristics. So they have a long life time and strong robustness. The micro mass spectrometer is composed of the glass substrate and the silicon substrate. The glass substrate is constructed by electrodes for TOF(Time-of-flight) which analyze an ion with mass to charge ratio as ion separator. The silicon substrate is highly doped wafer which is patterned for gate electrode and then 100 11m dry etching to grow the CNTs as the electron emitter. The CNTs are grown by HFCVD(Hot filament chemical vapor deposition) with sputtering the catalyst. We successfully attained to grow the CNTs and to test the characteristics.

Thermal, electrical and mechanical buckling loads of sandwich nano-beams made of FG-CNTRC resting on Pasternak's foundation based on higher order shear deformation theory

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad;Arani, M.R. Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.439-455
    • /
    • 2019
  • This research deals with thermo-electro-mechanical buckling analysis of the sandwich nano-beams with face-sheets made of functionally graded carbon nano-tubes reinforcement composite (FG-CNTRC) based on the nonlocal strain gradient elasticity theory (NSGET) considering various higher-order shear deformation beam theories (HSDBT). The sandwich nano-beam with FG-CNTRC face-sheets is subjected to thermal and electrical loads while is resting on Pasternak's foundation. It is assumed that the material properties of the face-sheets change continuously along the thickness direction according to different patterns for CNTs distribution. In order to include coupling of strain and electrical field in equation of motion, the nonlocal non-classical nano-beam model contains piezoelectric effect. The governing equations of motion are derived using Hamilton principle based on HSDBTs and NSGET. The differential quadrature method (DQM) is used to calculate the mechanical buckling loads of sandwich nano-beam as well as critical voltage and temperature rising. After verification with validated reference, comprehensive numerical results are presented to investigate the influence of important parameters such as various HSDBTs, length scale parameter (strain gradient parameter), the nonlocal parameter, the CNTs volume fraction, Pasternak's foundation coefficients, various boundary conditions, the CNTs efficiency parameter and geometric dimensions on the buckling behaviors of FG sandwich nano-beam. The numerical results indicate that, the amounts of the mechanical critical load calculated by PSDBT and TSDBT approximately have same values as well as ESDBT and ASDBT. Also, it is worthy noted that buckling load calculated by aforementioned theories is nearly smaller than buckling load estimated by FSDBT. Also, similar aforementioned structure is used to building the nano/micro oscillators.

Surface Treatments of Titanium Biomaterials by Anodization (양극산화법에 의한 생체적합형 티타늄 표면 개질)

  • Mun, Kyu-Shik;Kim, Jae-Yeon;Kim, Dong-Hyun;Cheon, Se-Jun;Kim, Hyo-Eun;Lee, Myoung-Hoon;Choi, Won-Youl
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.306-306
    • /
    • 2007
  • The surface was transformed to porous titanium oxide by the anodization of pure titanium. Titanium was anodized in non-aqueous and aqueous electrolytes at different potentials between 5 V and 150 V. Various electrolytes were compose of ethylene glycerol, $H_2SO_4,\;NH_4F\;and\;H_2O$. We obtained titania nanotube arrays on the micro pore of titanium. Micro pores and nano tubes were obtained by anodization at high potentials and low potentials, respectively. Morphologies of nanotubes and micro pore were characterized by FE-SEM. The unique surface structure is very attractive to electrical and medical applications such as gas sensor, biosensor, dental implant and stent.

  • PDF