• Title/Summary/Keyword: miR-8a

Search Result 777, Processing Time 0.032 seconds

Effect of miR27a on Proliferation and Invasion in Colonic Cancer Cells

  • Gao, Yang;Li, Bao-Dong;Liu, Yong-Gang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4675-4678
    • /
    • 2013
  • The aim of this study was to detect the expression of miR196a, miR146a, miR27a and miR200a in patients with colon cancer, and investigate the effect of miR27a expression on proliferation and invasion in colonic cancer cells. RT-PCR was employed to detect the expression levels in colon cancers. Then, colon cancer cells were cultured and transfected with 100 nM of miR27a mimics (80 nmol/L) or 80 nM miR27a inhibitors (80 nmol/L) in 24-well plates. Proliferation and invasion of colonic cancer cells were then determined by CCK-8 and Transwell assays, respectively. Our data showed miR27a to be high-expressed in patients with colon cancer. In addition, proliferation and invasion in the miR27a mimic group were significantly higher than in the control group and negative group (P<0.05), while, proliferation and invasion in the miR27a inhibitor group were obviously lowered (P<0.05). In conclusion, high expression of miR27a may play an important role in enhancing proliferation and invasion of colon cancer cells.

MiR-675 Promotes the Growth of Hepatocellular Carcinoma Cells Through Cdc25A Pathway

  • Yu, Ya-Qun;Weng, Jun;Li, Shu-Qun;Li, Bo;Lv, Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.3881-3885
    • /
    • 2016
  • Background: MicroRNAs (miRNAs) have fundamental roles in tumorigenesis. MiR-675 is upregulated in hepatocellular carcinoma(HCC) cells. However, the roles of miR-675 in hepatocellular carcinogenesis are still not fully elucidated. In this study, we focus on investigating the effect and mechanism of miR-675 in proliferation of HCC cells. Materials and Methods: The cell proliferation was measured by MTT assays after transfection with miR-675 inhibitor and miR-675 mimics in HCC cells. The expression level of miR-675 was detected by real-time quantitative reverse transcription polymerase chain reaction. Protein expression of Cdc25A was measured by western blotting analysis. Results: In MTT assays, overexpression of miR-675 promoted the proliferation of HCC cells(P<0.05. at 48 hours, P<0.01. at 72 hours) compared with the miR-675mimics control group. Downexpression of miR-675 inhibited the proliferation of HCC cells(P<0.05. at 48 hours, P<0.01. at 72 hours) compared with the miR-675inhibitor control group. In western blotting analysis, the expression level of Cdc25A was significantly increased (p<0.05) after treatment with miR-675 mimics. The expression level of Cdc25A was significantly decreased (p<0.05) after treatment with miR-675 inhibitor. Conclusions: Our results indicate that miR-675 promotes the proliferation in human hepatocellular carcinoma cells by associating with Cdc25A signaling pathway.

Expression of Micro RNA in Paraffin Embedded Tissue of Multiple Myeloma (다발성골수종 환자의 파라핀포매조직에서 MicroRNA 발현)

  • Choi, Woo Soon;Kwon, Kye Chul
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.4
    • /
    • pp.292-297
    • /
    • 2015
  • Research of thyroid cancer, liver cancer, and lung cancer has been reported in Korea. However microRNA research of multiple myeloma has never been reported. Hence we intended to confirm whether microRNA can be utilized as a diagnostic marker to patients of multiple myeloma. We also intended to evaluate whether microRNA can be detected in paraffin-embedded tissue (FFPE). This research was conducted targeting 8 samples from patients of multiple myeloma who do not have any other diseases, and 2 control samples. From January 2010 to July 2012, we selected miR-15a, miR-16, miR-21, miR-181a and miR-221 as microRNA target genes. It was decided that for a sample to be significant, the results should show values more than 1.5 or less than -1.5. Our findings of fold change were highly significant in miR-15a with a value of 37.5% (3/8). From these studies, we learned that miR-15a is useful with westerners. miR-221, on the other hand, shows conflicts with westerners, so more research will be needed in this area. In addition, it was confirmed that microRNA can be detected in paraffin embedded tissue (FFPE).

MicroRNA-296-5p Promotes Invasiveness through Downregulation of Nerve Growth Factor Receptor and Caspase-8

  • Lee, Hong;Shin, Chang Hoon;Kim, Hye Ree;Choi, Kyung Hee;Kim, Hyeon Ho
    • Molecules and Cells
    • /
    • v.40 no.4
    • /
    • pp.254-261
    • /
    • 2017
  • Glioblastomas (GBM) are very difficult to treat and their aggressiveness is one of the main reasons for this as well as for the frequent recurrences. MicroRNAs post-transcriptionally regulate their target genes through interaction between their seed sequence and 3'UTR of the target mRNAs. We previously reported that miR-296-3p is regulated by neurofibromatosis 2 (NF2) and enhances the invasiveness of GBM cells via SOCS2/STAT3. In this study, we investigated whether miR-296-5p, which originates from the same precursor miRNA as miR-296-3p, can increase the invasiveness of GBM cells. It was observed that miR-296-5p potentiated the invasion of various GBM cells including LN229, T98G, and U87MG. Through bioinformatics approaches, two genes were identified as miR-296-5p targets: caspase-8 (CASP8) and nerve growth factor receptor (NGFR). From results obtained from Ago2 immunoprecipitation and luciferase assays, we found that miR-296-5p downregulates CASP8 and NGFR through direct interaction between seed sequence of the miRNA and 3'UTR of the target mRNA. Knockdown of CASP8 or NGFR also increased the invasive ability of GBM cells, indicating that CASP8 and NGFR are involved in potentiation of invasiveness by miR-296-5p. Consistent with our findings, CASP8 was downregulated in brain metastatic lung cancer cells, which have a high level of miR-296-5p, compared to parental cells, suggesting that miR-296-5p may be generally associated with the acquisition of invasiveness. Collectively, our results implicate miR-296-5p as a potential cause of invasiveness in cancer and suggest it as a promising therapeutic target for GBM.

Diagnostic Value of miR-1260b in Cervical Cancer: A Pilot Study

  • Kim, Jungho;Park, Sunyoung;Lee, Hyeyoung
    • Biomedical Science Letters
    • /
    • v.26 no.1
    • /
    • pp.8-13
    • /
    • 2020
  • Cervical cancer is the fourth most common cancer in women, with approximately 528,000 new cases and 266,000 women dying of it per year in the world. MicroRNAs have recently been in the spotlight as potential biomarkers that regulate gene expression and are involved in tumorigenesis. In the present study, we evaluated miR-1260b as a potential biomarker for screening of cervical cancer by quantitative reverse transcription PCR. We profiled the TCGA data of miR-1260b in 307 cervical cancer tissues. Then, miR-1260b expression levels in 10 cervical cancer tissues and 10 noncancerous tissues were investigated in a pilot study. miR-1260b was found to be significantly up-regulated in cervical cancer FFPE tissues as compared to those in cervical normal FFPE tissues (P = 0.006). The mean expression level of miR-1260b in late-stage (IIB-IVB) was higher than in those with early-stage (IA-IIA). Furthermore, high miR-1260b was found to be associated with high hTERT and Ki-67 mRNA expression, which are representative of tumor prognosis. The results of the pilot study suggest that miR-1260b may be used as a novel biomarker for improving the diagnosis of cervical cancer.

MicroRNA expression profiling during the suckling-to-weaning transition in pigs

  • Jang, Hyun Jun;Lee, Sang In
    • Journal of Animal Science and Technology
    • /
    • v.63 no.4
    • /
    • pp.854-863
    • /
    • 2021
  • Weaning induces physiological changes in intestinal development that affect pigs' growth performance and susceptibility to disease. As a posttranscriptional regulator, microRNAs (miRNAs) regulate cellular homeostasis during intestinal development. We performed small RNA expression profiling in the small intestine of piglets before weaning (BW), 1 week after weaning (1W), and 2 weeks after weaning (2W) to identify weaning-associated differentially expressed miRNAs. We identified 38 differentially expressed miRNAs with varying expression levels among BW, 1W, and 2W. Then, we classified expression patterns of the identified miRNAs into four types. ssc-miR-196a and ssc-miR-451 represent pattern 1, which had an increased expression at 1W and a decreased expression at 2W. ssc-miR-499-5p represents pattern 2, which had an increased expression at 1W and a stable expression at 2W. ssc-miR-7135-3p and ssc-miR-144 represent pattern 3, which had a stable expression at 1W and a decreased expression at 2W. Eleven miRNAs (ssc-miR-542-3p, ssc-miR-214, ssc-miR-758, ssc-miR-4331, ssc-miR-105-1, ssc-miR-1285, ssc-miR-10a-5p, ssc-miR-4332, ssc-miR-503, ssc-miR-6782-3p, and ssc-miR-424-5p) represent pattern 4, which had a decreased expression at 1W and a stable expression at 2W. Moreover, we identified 133 candidate targets for miR-196a using a target prediction database. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the target genes were associated with 19 biological processes, 4 cellular components, 8 molecular functions, and 7 KEGG pathways, including anterior/posterior pattern specification as well as the cancer, PI3K-Akt, MAPK, GnRH, and neurotrophin signaling pathways. These findings suggest that miRNAs regulate the development of the small intestine during the weaning process in piglets by anterior/posterior pattern specification as well as the cancer, PI3K-Akt, MAPK, GnRH, and neurotrophin signaling pathways.

ssc-miR-185 targets cell division cycle 42 and promotes the proliferation of intestinal porcine epithelial cell

  • Wang, Wei;Wang, Pengfei;Xie, Kaihui;Luo, Ruirui;Gao, Xiaoli;Yan, Zunqiang;Huang, Xiaoyu;Yang, Qiaoli;Gun, Shuangbao
    • Animal Bioscience
    • /
    • v.34 no.5
    • /
    • pp.801-810
    • /
    • 2021
  • Objective: microRNAs (miRNAs) can play a role in a variety of physiological and pathological processes, and their role is achieved by regulating the expression of target genes. Our previous high-throughput sequencing found that ssc-miR-185 plays an important regulatory role in piglet diarrhea, but its specific target genes and functions in intestinal porcine epithelial cell (IPEC-J2) are still unclear. We intended to verify the target relationship between porcine miR-185 and cell division cycle 42 (CDC42) gene in IPEC-J2 and to explore the effect of miR-185 on the proliferation of IPEC-J2 cells. Methods: The TargetScan, miRDB, and miRanda software were used to predict the target genes of porcine miR-185, and CDC42 was selected as a candidate target gene. The CDC42-3' UTR-wild type (WT) and CDC42-3'UTR-mutant type (MUT) segments were successfully cloned into pmirGLO luciferase vector, and the luciferase activity was detected after co-transfection with miR-185 mimics and pmirGLO-CDC42-3'UTR. The expression level of CDC42 was analyzed using quantitative polymerase chain reaction and Western blot. The proliferation of IPEC-J2 was detected using cell counting kit-8 (CCK-8), methylthiazolyldiphenyl-tetrazolium bromide (MTT), and 5-ethynyl-2'-deoxyuridine (EdU) assays. Results: Double enzyme digestion and sequencing confirmed that CDC42-3'UTR-WT and CDC42-3'UTR-MUT were successfully cloned into pmirGLO luciferase reporter vector, and the luciferase activity was significantly reduced after co-transfection with miR-185 mimics and CDC42-3'UTR-WT. Further we found that the mRNA and protein expression level of CDC42 were down-regulated after transfection with miR-185 mimics, while the opposite trend was observed after transfection with miR-185 inhibitor (p<0.01). In addition, the CCK-8, MTT, and EdU results demonstrated that miR-185 promotes IPEC-J2 cells proliferation by targeting CDC42. Conclusion: These findings indicate that porcine miR-185 can directly target CDC42 and promote the proliferation of IPEC-J2 cells. However, the detailed regulatory mechanism of miR-185/CDC42 axis in piglets' resistance to diarrhea is yet to be elucidated in further investigation.

MiR-133b Acts as a Tumor Suppressor and Negatively Regulates TBPL1 in Colorectal Cancer Cells

  • Xiang, Kai-Min;Li, Xiao-Rong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3767-3772
    • /
    • 2014
  • Introduction: MicroRNAs have emerged as post-transcriptional regulators that are critically involved in tumorigenesis. This study was designed to explore the effect of miRNA 133b on the proliferation and expression of TBPL1 in colon cancer cells. Methods: Human colon cancer SW-620 cells and human colon adenocarcinoma HT-29 cells were cultured. MiRNA 133b mimcs, miRNA 133b inhibitors, siRNA for TBPL1 and scrambled control were synthesized and transfected into cells. MiR-133b levels in cells and CRC tumor tissue was measured by real-time PCR. TBPL1 mRNA was detected by RT-PCR. Cell proliferation was studied with MTT assay. Western blotting was applied to detect TBPL1 protein levels. Luciferase assays were conducted using a pGL3-promoter vector cloned with full length of 3'UTR of human TBPL1 or 3'UTR with mutant sequence of miR-133b target site in order to confirm if the putative binding site is responsible for the negative regulation of TBPL1 by miR-133b. Results: Real time PCR results showed that miRNA 133b was lower in CRC tissue than that in adjacent tissue. After miR-133b transfection, its level was elevated till 48h, accompanied by lower proliferation in both SW-620 and HT-29 cells. According to that listed in http://www.targetscan.org, the 3'-UTR of TBPL1 mRNA (NM_004865) contains one putative binding site of miR-133b. This site was confirmed to be responsible for the negative regulation by miR-133b with luciferase assay. Further, Western blotting and immunohistochemistry both indicated a higher TBPL1 protein expression level in CRC tissue. Finally, a siRNA for TBPL1 transfection obviously slowed down the cell proliferation in both SW-620 and HT-29 cells. Conclusion: MiR-133b might act as a tumor suppressor and negatively regulate TBPL1 in CRC.

Serum exosomal miR-192 serves as a potential detective biomarker for early pregnancy screening in sows

  • Ruonan Gao;Qingchun Li;Meiyu Qiu;Su Xie;Xiaomei Sun;Tao Huang
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1336-1349
    • /
    • 2023
  • Objective: The study was conducted to screen differentially expressed miRNAs in sows at early pregnancy by high-throughput sequencing and explore its mechanism of action on embryo implantation. Methods: The blood serum of pregnant and non-pregnant Landrace×Yorkshire sows were collected 14 days after artificial insemination, and exosomal miRNAs were purified for high throughput miRNA sequencing. The expression patterns of 10 differentially expressed (DE) miRNAs were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The qRT-PCR quantified the abundance of serum exosomal miR-192 in pregnant and control sows, and the diagnostic power was assessed by receiver operating characteristic (ROC) analysis. The target genes of DE miRNAs were predicted with bioinformatics software, and the functional and pathway enrichment analysis was performed on gene ontology and the Kyoto encyclopedia of genes and genomes terms. Furthermore, a luciferase reporter system was used to identify the target relation between miR-192 and integrin alpha 4 (ITGA4), a gene influencing embryo implantation in pigs. Finally, the expression levels of miRNAs and the target gene ITGA4 were analyzed by qRT-PCR, and western blot, with the proliferation of BeWo cells detected by cell counting kit-8 (CCK-8). Results: A total of 221 known miRNAs were detected in the libraries of the pregnant and non-pregnant sows, of which 55 were up-regulated and 67 were down-regulated in the pregnant individuals compared with the non-pregnant controls. From these, the expression patterns of 10 DE miRNAs were validated. The qRT-PCR analysis further confirmed a significantly higher expression of miR-192 in the serum exosomes extracted from pregnant sows, when compared to controls. The ROC analysis revealed that miR-192 provided excellent diagnostic accuracy for pregnancy (area under the ROC curve [AUC]=0.843; p>0.001). The dual-luciferase reporter assay indicated that miR-192 directly targeted ITGA4. The protein expression of ITGA4 was reduced in cells that overexpressed miR-192. Overexpression of miR-192 resulted in the decreased proliferation of BeWo cells and regulated the expression of cell cycle-related genes. Conclusion: Serum exosomal miR-192 could serve as a potential biomarker for early pregnancy in pigs. miR-192 targeted ITGA4 gene directly, and miR-192 can regulate cellular proliferation.

Induction of MicroRNA-9 Mediates Cytotoxicity of Curcumin Against SKOV3 Ovarian Cancer Cells

  • Zhao, Song-Feng;Zhang, Xiao;Zhang, Xiao-Jian;Shi, Xiu-Qin;Yu, Zu-Jiang;Kan, Quan-Cheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3363-3368
    • /
    • 2014
  • Background: Curcumin, a phenolic compound extracted from the rhizomes of Curcuma longa, has shown cytotoxic effects against a variety of cancers. The aim of this study was to identify potential microRNA (miRNA) mediators of the anticancer effects of curcumin in ovarian cancer cells. Materials and Methods: SKOV3 ovarian cancer cells were treated with curcumin ($10-60{\mu}M$) and miR-9 expression, cell proliferation, and apoptosis were assessed. The effects of miR-9 depletion on curcumin-mediated growth suppression were also examined. Phosphorylation of Akt and forkhead box protein O1 (FOXO1) was measured in cells with miR-9 overexpression or curcumin treatment. Results: Curcumin caused a significant and dose-dependent increase of miR-9 expression in SKOV3 cells, while significantly impeding cell proliferation and stimulating apoptosis. Depletion of miR-9 significantly (p<0.05) attenuated the growth-suppressive effects of curcumin on SKOV3 cells, coupled with reduced percentages of apoptotic cells. In contrast, overexpression of miR-9 significantly enhanced the cleavage of caspase-3 and poly(ADP-ribose) polymerase and promoted apoptotic death in SKOV3 cells. Western blot analysis showed that both miR-9 overexpression and curcumin similarly caused a significant (p<0.05) decline in the phosphorylation of Akt and FOXO1, compared to untreated cells. Conclusions: The present study provided evidence that curcumin exerts its cytotoxic effects against SKOV3 ovarian cancer cells largely through upregulation of miR-9 and subsequent modulation of Akt/FOXO1 axis. Further studies are needed to identify direct targets of miR-9 that mediate the anticancer effects of curcumin in ovarian cancer cells.