• 제목/요약/키워드: miR-29a

검색결과 220건 처리시간 0.031초

MicroRNAs as Promising Biomarkers for Tumor-staging: Evaluation of MiR21 MiR155 MiR29a and MiR92a in Predicting Tumor Stage of Rectal Cancer

  • Yang, Yun;Peng, Wei;Tang, Tian;Xia, Lin;Wang, Xiao-Dong;Duan, Bao-Feng;Shu, Ye
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권13호
    • /
    • pp.5175-5180
    • /
    • 2014
  • Objective: In this study, tumor-stage predictive abilities of miR21, miR155, miR29a and miR92a were evaluated in rectal cancer (RC). Methods: Expression of miR21, miR155, miR29a and miR92a was detected and quantitated in tumor tissue and in adjacent normal tissue from 40 patients by TaqMan MicroRNA assay. Results: Significant overexpression of miR21, miR155, miR29a and miR92a was observed in RC tissues. While high expression of miR21, miR155 and miR29a in N1-2 and C-D stages presented a potential correlation with N and Duke stages, partial correlation analysis suggested that only miR155 rather than miR21 and miR29a played a greater influencing role. Receiver operating characteristics (ROC) curve analysis showed that miR155 could discriminate N0 from N1-2 with 85.0% sensitivity and 85.0% specificity, N2 from N0-1 with 90.0% sensitivity and 96.7% specificity, and C-D stage from A-B stage with 81.0% sensitivity and 84.2% specificity. Conclusions: Increase in expression of miR155 might represent a novel predictor for RC N and Dukes staging.

miR-29a suppresses growth and invasion of gastric cancer cells in vitro by targeting VEGF-A

  • Chen, Ling;Xiao, Hong;Wang, Zong-Hua;Huang, Yi;Liu, Zi-Peng;Ren, Hui;Song, Hang
    • BMB Reports
    • /
    • 제47권1호
    • /
    • pp.39-44
    • /
    • 2014
  • Increasing data shows miR-29a is a key regulator of oncogenic processes. It is significantly down-regulated in some kind of human tumors and possibly functionally linked to cellular proliferation, survival and migration. However, the mechanism remains unclear. In this study, we report miR-29a is significantly under-expressed in gastric cancer compared to the healthy donor. The microvessel density is negatively related to miR-29a expression in gastric cancer tissues. The ectopic expression of miR-29a significantly inhibits proliferation and invasion of gastric cancer cells. Furthermore, western blot combined with the luciferase reporter assays demonstrate that vascular endothelial growth factor A (VEGF-A) is direct target of miR-29a. This is the first time miR-29a was found to suppress the tumor microvessel density in gastric cancer by targeting VEGF-A. Taken together, these results suggest that miR-29a is a tumor suppressor in gastric cancer. Restoration of miR-29a in gastric cancer may be a promising therapeutic approach.

LncRNA H19 Drives Proliferation of Cardiac Fibroblasts and Collagen Production via Suppression of the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β Axis

  • Guo, Feng;Tang, Chengchun;Huang, Bo;Gu, Lifei;Zhou, Jun;Mo, Zongyang;Liu, Chang;Liu, Yuqing
    • Molecules and Cells
    • /
    • 제45권3호
    • /
    • pp.122-133
    • /
    • 2022
  • The aim of this study was to investigating whether lncRNA H19 promotes myocardial fibrosis by suppressing the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β axis. Patients with atrial fibrillation (AF) and healthy volunteers were included in the study, and their biochemical parameters were collected. In addition, pcDNA3.1-H19, si-H19, and miR-29a/b-3p mimic/inhibitor were transfected into cardiac fibroblasts (CFs), and proliferation of CFs was detected by MTT assay. Expression of H19 and miR-29a/b-3p were detected using real-time quantitative polymerase chain reaction, and expression of α-smooth muscle actin (α-SMA), collagen I, collagen II, matrix metalloproteinase-2 (MMP-2), and elastin were measured by western blot analysis. The dual luciferase reporter gene assay was carried out to detect the sponging relationship between H19 and miR-29a/b-3p in CFs. Compared with healthy volunteers, the level of plasma H19 was significantly elevated in patients with AF, while miR-29a-3p and miR-29b-3p were markedly depressed (P < 0.05). Serum expression of lncRNA H19 was negatively correlated with the expression of miR-29a-3p and miR-29b-3p among patients with AF (rs = -0.337, rs = -0.236). Moreover, up-regulation of H19 expression and down-regulation of miR-29a/b-3p expression facilitated proliferation and synthesis of extracellular matrix (ECM)-related proteins. SB431542 and si-VEGFA are able to reverse the promotion of miR-29a/b-3p on proliferation of CFs and ECM-related protein synthesis. The findings of the present study suggest that H19 promoted CF proliferation and collagen synthesis by suppressing the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β axis, and provide support for a potential new direction for the treatment of AF.

MiR-29a and MiR-140 Protect Chondrocytes against the Anti-Proliferation and Cell Matrix Signaling Changes by IL-1β

  • Li, Xianghui;Zhen, Zhilei;Tang, Guodong;Zheng, Chong;Yang, Guofu
    • Molecules and Cells
    • /
    • 제39권2호
    • /
    • pp.103-110
    • /
    • 2016
  • As a degenerative joint disease, osteoarthritis (OA) constitutes a major cause of disability that seriously affects the quality of life of a large population of people worldwide. However, effective treatment that can successfully reverse OA progression is lacking until now. The present study aimed to determine whether two small non-coding RNAs miR-29a and miR-140, which are significantly down-regulated in OA, can be applied together as potential therapeutic targets for OA treatment. MiRNA synergy score was used to screen the miRNA pairs that potentially synergistically regulate OA. An in vitro model of OA was established by treating murine chondrocytes with IL-$1{\beta}$. Transfection of miR-29a and miR-140 via plasmids was investigated on chondrocyte proliferation and expression of nine genes such as ADAMTS4, ADAMTS5, ACAN, COL2A1, COL10A1, MMP1, MMP3, MMP13 and TIMP metallopeptidase inhibitor 1 (TIMP1). Western blotting was used to determine the protein expression level of MMP13 and TIMP1, and ELISA was used to detect the content of type II collagen. Combined use of miR-29a and miR-140 successfully reversed the destructive effect of IL-$1{\beta}$ on chondrocyte proliferation, and notably affected the MMP13 and TIMP1 gene expression that regulates extracellular matrix. Although co-transfection of miR-29a and miR-140 did not show a synergistic effect on MMP13 protein expression and type II collagen release, but both of them can significantly suppress the protein abundance of MMP13 and restore the type II collagen release in IL-$1{\beta}$ treated chondrocytes. Compared with single miRNA transfection, cotransfection of both miRNAs exceedingly abrogated the suppressed the protein production of TIMP1 caused by IL-$1{\beta}$, thereby suggesting potent synergistic action. These results provided1novel insights into the important function of miRNAs' collaboration in OA pathological development. The reduced MMP13, and enhanced TIMP1 protein production and type II collagen release also implies that miR-29a and miR-140 combination treatment may be a possible treatment for OA.

LncRNA H19/miR-29b-3p/PGRN Axis Promoted Epithelial-Mesenchymal Transition of Colorectal Cancer Cells by Acting on Wnt Signaling

  • Ding, Dayong;Li, Changfeng;Zhao, Tiancheng;Li, Dandan;Yang, Lei;Zhang, Bin
    • Molecules and Cells
    • /
    • 제41권5호
    • /
    • pp.423-435
    • /
    • 2018
  • This investigation was aimed at working out the combined role of lncRNA H19, miR-29b and Wnt signaling in the development of colorectal cancer (CRC). In the aggregate, 185 CRC tissues and corresponding para-carcinoma tissues were gathered. The human CRC cell lines (i.e. HT29, HCT116, SW480 and SW620) and normal colorectal mucosa cell line (NCM460) were also purchased. Si-H19, si-NC, miR-29b-3p mimics, miR-29b-3p inhibitor, si-PGRN and negative control (NC) were, respectively, transfected into the CRC cells. Luciferase reporter plasmids were prepared to evaluate the transduction activity of $Wnt/{\beta}-catenin$ signaling pathway, and dual-luciferase reporter gene assay was arranged to confirm the targeted relationship between H19 and miR-29b-3p, as well as between miR-29b-3p and PGRN. Finally, the proliferative and invasive capacities of CRC cells were appraised through transwell, MTT and scratch assays. As a result, overexpressed H19 and down-expressed miR-29b-3p displayed close associations with the CRC patients' poor prognosis (P < 0.05). Besides, transfection with si-H19, miR-29b-3p mimic or si-PGRN were correlated with elevated E-cadherin expression, decreased snail and vimentin expressions, as well as less-motivated cell proliferation and cell metastasis (P < 0.05). Moreover, H19 was verified to directly target miR-29b-3p based on the luciferase reporter gene assay (P < 0.05), and miR-29b-3p also bound to PGRN in a direct manner (P < 0.05). Finally, addition of LiCl ($Wnt/{\beta}-catenin$ pathway activator) or XAV93920 ($Wnt/{\beta}-catenin$ pathway inhibitor) would cause remarkably altered E-cadherin, c-Myc, vimentin and snail expressions, as well as significantly changed transcriptional activity of ${\beta}-catenin/Tcf$ reporter plasmid (P < 0.05). In conclusion, the lncRNA H19/miR-29b-3p/PGRN/Wnt axis counted a great deal for seeking appropriate diagnostic biomarkers and treatment targets for CRC.

Expression of miR-29a in whole Blood of Patients with Colorectal Neoplasm

  • Hwang, Dasom;Kim, Dahye;Chang, Yunhee;Hirgo, Workneh Korma;Lee, Hyeyoung
    • 대한의생명과학회지
    • /
    • 제27권4호
    • /
    • pp.216-222
    • /
    • 2021
  • Colorectal cancer (CRC) is major cancer with high incidence and mortality worldwide. It is known that most CRCs arise from precursor adenomatous polyps (APs). Recently, microRNA (miRNA) has been proposed as a biomarker for various cancers including CRC. In this study, the expression patterns of miR-29a in the whole blood (WB) of CRC, AP, and control groups were analyzed by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) to evaluate the expression level of miR-29a in patients with colorectal neoplasm (CRN) including CRC and AP. As a result, the relative expression of miR-29a was significantly decreased in the patients with CRN compared to the control group (P<0.001). The results were in agreement with previous in vitro cell studies and studies that used tissue and feces samples, suggesting that miR-29a in WB may be useful in demonstrating the status of colorectal tissue. Additionally, we divided the control group into healthy control (HC) without any colorectal symptoms and non-tumor control (NTC) with colorectal symptoms but without any CRN. And then the relative expression of miR-29a was also significantly decreased in the NTC group compared to the HC group (P<0.001). Therefore, our study revealed that miR-29a can differentiate patients with CRN from HC group, but they are also involved in the early stage of inflammatory response and cannot be specific biomarkers for CRN.

Profiling of Salivary Exosomal Micro RNAs in Burning Mouth Syndrome Patients

  • Kim, Kyun-Yo;Byun, Jin-Seok;Jung, Jae-Kwang;Choi, Jae-Kap
    • Journal of Oral Medicine and Pain
    • /
    • 제44권1호
    • /
    • pp.25-30
    • /
    • 2019
  • Purpose: The exact causes of burning mouth syndrome (BMS) is unclear so far. There are many studies to elucidate the relation between oral disease and genetic predisposition. In this study, we first tried to investigate salivary exosomal genetic components that could play an important role for diagnosing and elucidating the progression of BMS. Methods: We compared salivary exosomal micro RNAs (miRNAs) of BMS Patients to those of control using next generation sequencing (NGS). Unstimulated whole saliva from 15 patients with BMS and 10 control subjects were divided into two sets. Isolated exosomes and their total RNAs were subject to NGS for the screening of miRNAs. Results: There were up-regulated 10 exosomal miRNAs (hsa-miR-1273h-5p, hsa-miR-1273a, hsa-miR-1304-3p, hsa-miR-4449, hsa-miR-1285-3p, hsa-miR-6802-5p, hsa-miR-1268a, hsa-miR-1273d, hsa-miR-1273f, and hsa-miR-423-5p) and down-regulated 18 exosomal miRNAs (hsa-miR-27b-3p, hsa-miR-16-5p, hsa-miR-186-5p, hsa-miR-142-3p, hsa-miR-141-3p, hsa-miR-150-5p, hsa-miR-374a-5p, hsa-miR-93-5p, hsa-miR-29c-3p, hsa-miR-29a-3p, hsa-miR-148a-3p, hsa-miR-22-3p, hsa-miR-27a-3p, hsa-miR-424-5p, hsa-miR-19b-3p, hsa-miR-99a-5p, hsa-miR-548d-3p, and hsa-miR-19a-3p) in BMS patients comparing with those of control subjects. Conclusions: We show that there are 28 differential expression of miRNAs between the patients with BMS and those of control subjects. The specific function of indicated miRNAs should be further elucidated.

microRNA-29b: an Emerging Player in Human Cancer

  • Liu, Hao;Wang, Bin;Lin, Jie;Zhao, Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권21호
    • /
    • pp.9059-9064
    • /
    • 2014
  • MicroRNAs (miRNAs) are ubiquitously expressed small, non-coding RNAs that negatively regulate gene expression at a post transcriptional/translational level. They have emerging as playing crucial roles in cancer at all stages ranging from initiation to metastasis. As a tumor suppressor miRNA, aberrant expression of microRNA-29b (miR-29b) has been detected in various types of cancer, and its disturbance is related with tumor development and progression. In this review, we summarize the latest findings with regard to the tumor suppressor signatureof miR-29b and its regulatory mechanisms. Our review highlights the diverse relationships between miR-29b and its target genes in malignant tumors.

바소프레신과 옥시토신을 동시에 조절 마이크로RNA, miR-24 (MiR-24 Simultaneously Regulates Both Oxytocin and Vasopressin)

  • 이헌진
    • 생명과학회지
    • /
    • 제29권1호
    • /
    • pp.118-122
    • /
    • 2019
  • 옥시토신(Oxt)과 바소프레신(Avp)은 주로 시상하부의 신경세포에서 생성이 되어 뇌하수체 후엽에서 온 몸으로 분비된다. 유전자 구조와 염기서열 연구를 통해 옥시토신과 바소프레신이 진화적으로 발달되는 단계에서 유전자가 염색체 내에 중복된 것으로 추정되어져 왔다. 이전 연구에서 작은 조절자로 알려진 마이크로RNA 중 하나인 miR-24가 옥시토신과 직접 결합한 후 조절할 수 있다는 사실을 본 연구실에서 발표한 바가 있지만, 바소프레신을 동시에 조절할 수 있는지는 확실치 않았다. 본 연구에서 바소프레신을 조절할 수 있는 후보 마이크로RNA를 생물정보학적 방법으로 탐색하였다. 여러 후보 중 miR-24만이 바소프레신과 직접 결합할 수 있음을 형광 리포터 분석과 바소프레신 결합부위의 돌연변이 cDNA 제작을 통해 밝혀내었다. 바소프레신의 miR-24 결합 필수 부위인 "seed" 부분을 돌연변이 시킨 바소프레신의 경우 miR-24와의 결합능이 현저히 떨어지고 miR-24의 저해제 역시 결합능을 감소시키는 것을 보아 miR-24가 바소프레신에 결합하여 조절할 수 있음을 명확히 할 수 있었다. 이러한 결과를 종합해 볼 때 단일 마이크로RNA가 두 주요한 뇌하수체 호르몬의 조절에 관여한다는 새로운 조절 기전을 제시하여 준다.

MiR-133b Acts as a Tumor Suppressor and Negatively Regulates TBPL1 in Colorectal Cancer Cells

  • Xiang, Kai-Min;Li, Xiao-Rong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권8호
    • /
    • pp.3767-3772
    • /
    • 2014
  • Introduction: MicroRNAs have emerged as post-transcriptional regulators that are critically involved in tumorigenesis. This study was designed to explore the effect of miRNA 133b on the proliferation and expression of TBPL1 in colon cancer cells. Methods: Human colon cancer SW-620 cells and human colon adenocarcinoma HT-29 cells were cultured. MiRNA 133b mimcs, miRNA 133b inhibitors, siRNA for TBPL1 and scrambled control were synthesized and transfected into cells. MiR-133b levels in cells and CRC tumor tissue was measured by real-time PCR. TBPL1 mRNA was detected by RT-PCR. Cell proliferation was studied with MTT assay. Western blotting was applied to detect TBPL1 protein levels. Luciferase assays were conducted using a pGL3-promoter vector cloned with full length of 3'UTR of human TBPL1 or 3'UTR with mutant sequence of miR-133b target site in order to confirm if the putative binding site is responsible for the negative regulation of TBPL1 by miR-133b. Results: Real time PCR results showed that miRNA 133b was lower in CRC tissue than that in adjacent tissue. After miR-133b transfection, its level was elevated till 48h, accompanied by lower proliferation in both SW-620 and HT-29 cells. According to that listed in http://www.targetscan.org, the 3'-UTR of TBPL1 mRNA (NM_004865) contains one putative binding site of miR-133b. This site was confirmed to be responsible for the negative regulation by miR-133b with luciferase assay. Further, Western blotting and immunohistochemistry both indicated a higher TBPL1 protein expression level in CRC tissue. Finally, a siRNA for TBPL1 transfection obviously slowed down the cell proliferation in both SW-620 and HT-29 cells. Conclusion: MiR-133b might act as a tumor suppressor and negatively regulate TBPL1 in CRC.