• Title/Summary/Keyword: miR-10b

Search Result 403, Processing Time 0.024 seconds

MicroRNA-22 negatively regulates LPS-induced inflammatory responses by targeting HDAC6 in macrophages

  • Youn, Gi Soo;Park, Jong Kook;Lee, Chae Yeon;Jang, Jae Hee;Yun, Sang Ho;Kwon, Hyeok Yil;Choi, Soo Young;Park, Jinseu
    • BMB Reports
    • /
    • v.53 no.4
    • /
    • pp.223-228
    • /
    • 2020
  • Dysregulation of histone deacetylase 6 (HDAC6) can lead to the pathologic states and result in the development of various diseases including cancers and inflammatory diseases. The objective of this study was to elucidate the regulatory role of microRNA-22 (miR-22) in HDAC6-mediated expression of pro-inflammatory cytokines in lipopolysaccharide (LPS)-stimulated macrophages. LPS stimulation induced HDAC6 expression, but suppressed miR-22 expression in macrophages, suggesting possible correlation between HDAC6 and miR-22. Luciferase reporter assays revealed that 3'UTR of HDAC6 was a bona fide target site of miR-22. Transfection of miR-22 mimic significantly inhibited LPS-induced HDAC6 expression, while miR-22 inhibitor further increased LPS-induced HDAC6 expression. LPS-induced activation of NF-κB and AP-1 was inhibited by miR-22 mimic, but further increased by miR-22 inhibitor. LPS-induced expression of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 was inhibited by miR-22 mimic, but further increased by miR-22 inhibitor. Taken together, these data provide evidence that miR-22 can downregulate LPS-induced expression of pro-inflammatory cytokines via suppression of NF-κB and AP-1 axis by targeting HDAC6 in macrophages.

miR-27a as an Oncogenic microRNA of Hepatitis B Virus-related Hepatocellular Carcinoma

  • Wu, Xin-Jun;Li, Yan;Liu, Dong;Zhao, Lun-De;Bai, Bin;Xue, Ming-Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.885-889
    • /
    • 2013
  • microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression through post-transcriptional interactions with mRNA. miRNAs have recently emerged as key regulators of various cancers. Although miR-27a has been implicated in several other cancers, its role in hepatitis B virus-related hepatocellular carcinoma (HCC) is unknown. In this study, we showed miR-27a to be frequently up-regulated in HCC tissues and HCC cell lines (HepG2 and Huh7). Overexpression of miR-27a enhanced cell proliferation, promoted migration and invasion, and activated cell cycling in HepG2 and Huh7 cells. In summary, our results suggest that up-regulation of miR-27a may play an oncogenic role in the development of HCC and might thus be a new therapeutic target in HCC patients.

Differential MicroRNA Expression Between Gastric Cancer Tissue and Non-cancerous Gastric Mucosa According to Helicobacter pylori Status

  • Lee, Jung Won;Kim, Nayoung;Park, Ji Hyun;Kim, Hee Jin;Chang, Hyun;Kim, Jung Min;Kim, Jin-Wook;Lee, Dong Ho
    • Journal of Cancer Prevention
    • /
    • v.22 no.1
    • /
    • pp.33-39
    • /
    • 2017
  • Background: MicroRNAs (miRNAs) are key post-translational mechanisms which can regulate gene expression in gastric carcinogenesis. To identify miRNAs responsible for gastric carcinogenesis, we compared expression levels of miRNAs between gastric cancer tissue and non-cancerous gastric mucosa according to Helicobacter pylori status. Methods: Total RNA was extracted from the cancerous regions of formalin-fixed, paraffin-embedded tissues of H. pylori-positive (n = 8) or H. pylori-negative (n = 8) patients with an intestinal type of gastric cancer. RNA expression was analyzed using a 3,523 miRNA profiling microarray based on the Sanger miRBase. Validation analysis was performed using TaqMan miRNA assays for biopsy samples from 107 patients consisted of control and gastric cancer with or without H. pylori. And then, expression levels of miRNAs were compared according to subgroups. Results: A total of 156 miRNAs in the aberrant miRNA profiles across the miRNA microarray showed differential expression (at least a 2-fold change, P < 0.05) in cancer tissue, compared to noncancerous mucosa in both of H. pylori-negative and -positive samples. After 10 promising miRNAs were selected, validations by TaqMan miRNA assays confirmed that two miRNAs (hsa-miR-135b-5p and hsa-miR-196a-5p) were significantly increased and one miRNA (hsa-miR-145-5p) decreased in cancer tissue compared to non-cancerous gastric mucosa at H. pylori-negative group. For H. pylori-positive group, three miRNAs (hsa-miR-18a-5p, hsa-miR-135b-5p, and hsa-miR-196a-5p) were increased in cancer tissue. hsa-miR-135b-5p and hsa-miR-196a-5p were increased in gastric cancer in both of H. pylori-negative and -positive. Conclusions: miRNA expression of the gastric cancer implies that different but partially common gastric cancer carcinogenic mechanisms might exist according to H. pylori status.

MicroRNAs as Promising Biomarkers for Tumor-staging: Evaluation of MiR21 MiR155 MiR29a and MiR92a in Predicting Tumor Stage of Rectal Cancer

  • Yang, Yun;Peng, Wei;Tang, Tian;Xia, Lin;Wang, Xiao-Dong;Duan, Bao-Feng;Shu, Ye
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5175-5180
    • /
    • 2014
  • Objective: In this study, tumor-stage predictive abilities of miR21, miR155, miR29a and miR92a were evaluated in rectal cancer (RC). Methods: Expression of miR21, miR155, miR29a and miR92a was detected and quantitated in tumor tissue and in adjacent normal tissue from 40 patients by TaqMan MicroRNA assay. Results: Significant overexpression of miR21, miR155, miR29a and miR92a was observed in RC tissues. While high expression of miR21, miR155 and miR29a in N1-2 and C-D stages presented a potential correlation with N and Duke stages, partial correlation analysis suggested that only miR155 rather than miR21 and miR29a played a greater influencing role. Receiver operating characteristics (ROC) curve analysis showed that miR155 could discriminate N0 from N1-2 with 85.0% sensitivity and 85.0% specificity, N2 from N0-1 with 90.0% sensitivity and 96.7% specificity, and C-D stage from A-B stage with 81.0% sensitivity and 84.2% specificity. Conclusions: Increase in expression of miR155 might represent a novel predictor for RC N and Dukes staging.

The Up-Regulation of miR-199b-5p in Erythroid Differentiation Is Associated with GATA-1 and NF-E2

  • Li, Yuxia;Bai, Hua;Zhang, Zhongzu;li, Weihua;Dong, Lei;Wei, Xueju;Ma, Yanni;Zhang, Junwu;Yu, Jia;Sun, Guotao;Wang, Fang
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.213-219
    • /
    • 2014
  • MicroRNAs (miRNAs) represent a class of small non-coding regulatory RNAs that play important roles in normal hematopoiesis, including erythropoiesis. Although studies have identified several miRNAs that regulate erythroid commitment and differentiation, we do not understand the mechanism by which the crucial erythroid transcription factors, GATA-1and NF-E2 directly regulate and control differentiation via miRNA pathways. In this study, we identified miR-199b-5p as a key regulator of human erythropoiesis, and its expression was up-regulated during the erythroid differentiation of K562 cells. Furthermore, the increase of miR-199b-5p in erythroid cells occurred in a GATA-1- and NF-E2-dependent manner during erythrocyte maturation. Both GATA-1 and NF-E2 bound upstream of the miR-199b gene locus and activated its transcription. Forced expression of miRNA-199b-5p in K562 cells affected erythroid cell proliferation and maturation. Moreover, we identified c-Kit as a direct target of miR-199b-5p in erythroid cells. Taken together, our results establish a functional link among the erythroid transcription factors GATA-1/NF-E2, miR-199b-5p and c-Kit, and provide new insights into the coupling of transcription and post-transcription regulation in erythroid differentiation.

Dysregulation of MicroRNA-196b-5p and MicroRNA-375 in Gastric Cancer

  • Lee, Seung Woo;Park, Ki Cheol;Kim, Jeong Goo;Moon, Sung Jin;Kang, Sang Bum;Lee, Dong Soo;Sul, Hae Joung;Ji, Jeong Seon;Jeong, Hyun Yong
    • Journal of Gastric Cancer
    • /
    • v.16 no.4
    • /
    • pp.221-229
    • /
    • 2016
  • Purpose: Dysregulated microRNAs (miRNAs) can contribute to cancer development by leading to abnormal proliferation of cells, apoptosis, and differentiation. Although several miRNAs that are related to gastric cancer have been identified, the reported results have been inconsistent. The aim of this study was to determine miRNA expression profiles and validate miRNAs up- and down-regulated in gastric cancer. Materials and Methods: We evaluated 34 primary gastric cancer tissues and paired adjacent nontumorous gastric tissues. Total RNA was extracted, and low-molecular-weight RNAs (<200 nucleotides) were isolated for further analysis. Two pairs of tissues were processed for GeneChip microarray analysis, and the identified up- and down-regulated miRNAs were validated by real-time quantitative polymerase chain reaction (qPCR). Results: In the set of differentially expressed miRNAs, 5 were overexpressed by more than 2 fold, and 5 were reduced by 2 fold or less in gastric cancer tissues compared with normal gastric tissues. Four of these miRNAs (miR-196b-5p, miR-375, miR-483-5p, and miR-486-5p) were then validated by qPCR, and the relative expression levels of 2 miRNAs (miR-196b-5p and miR-375) were significantly different between cancer and normal tissues. Conclusions: Our results revealed that the expression of miR-196b-5p and miR-375 significantly correlates with gastric cancer. These miRNAs could therefore serve as diagnostic biomarkers of gastric cancer.

Exosomal miR-181b-5p Downregulation in Ascites Serves as a Potential Diagnostic Biomarker for Gastric Cancer-associated Malignant Ascites

  • Yun, Jieun;Han, Sang-Bae;Kim, Hong Jun;Go, Se-il;Lee, Won Sup;Bae, Woo Kyun;Cho, Sang-Hee;Song, Eun-Kee;Lee, Ok-Jun;Kim, Hee Kyung;Yang, Yaewon;Kwon, Jihyun;Chae, Hee Bok;Lee, Ki Hyeong;Han, Hye Sook
    • Journal of Gastric Cancer
    • /
    • v.19 no.3
    • /
    • pp.301-314
    • /
    • 2019
  • Purpose: Peritoneal carcinomatosis in gastric cancer (GC) patients results in extremely poor prognosis. Malignant ascites samples are the most appropriate biological material to use to evaluate biomarkers for peritoneal carcinomatosis. This study identified exosomal MicroRNAs (miRNAs) differently expressed between benign liver cirrhosis-associated ascites (LC-ascites) and malignant gastric cancer-associated ascites (GC-ascites), and validated their role as diagnostic biomarkers for GC-ascites. Materials and Methods: Total RNA was extracted from exosomes isolated from 165 ascites samples (73 LC-ascites and 92 GC-ascites). Initially, microarrays were used to screen the expression levels of 2,006 miRNAs in the discovery cohort (n=22). Subsequently, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analyses were performed to validate the expression levels of selected exosomal miRNAs in the training (n=70) and validation (n=73) cohorts. Furthermore, carcinoembryonic antigen (CEA) levels were determined in ascites samples. Results: The miR-574-3p, miR-181b-5p, miR-4481, and miR-181d were significantly downregulated in the GC-ascites samples compared to the LC-ascites samples, and miR-181b-5p showed the best diagnostic performance for GC-ascites (area under the curve [AUC]=0.798 and 0.846 for the training and validation cohorts, respectively). The diagnostic performance of CEA for GC-ascites was improved by the combined analysis of miR-181b-5p and CEA (AUC=0.981 and 0.946 for the training and validation cohorts, respectively). Conclusions: We identified exosomal miRNAs capable of distinguishing between non-malignant and GC-ascites, showing that the combined use of miR-181b-5p and CEA could improve diagnosis.

Differential microRNA Expression by Solexa Sequencing in the Sera of Ovarian Cancer Patients

  • Ji, Ting;Zheng, Zhi-Guo;Wang, Feng-Mei;Xu, Li-Jian;Li, Lu-Feng;Cheng, Qi-Hui;Guo, Jiang-Feng;Ding, Xian-Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1739-1743
    • /
    • 2014
  • MicroRNAs are a class of small noncoding RNA which play important regulatory roles in a variety of cancers. MiRNA-specific expression profiles have been reported for several pathological conditions. In this study, we combined large scale parallel Solexa sequencing to identify 11 up-regulated miRNAs and 19 down-regulated miRNAs with computational techniques in the sera of ovarian cancer patients while using healthy serum as the control. Among the above, four miRNAs (miR-22, miR-93, miR-106b, miR-451) were validated by quantitative RT-PCR and found to be significantly aberrantly expressed in the serum of ovarian cancer patients (P<0.05). There were no significant differences between samples from cancer stage I/II and III/IV. However, the levels of miR-106b (p=0.003) and miR-451 (p=0.007) were significantly different in those patients under and over 51 yearsof age. MiR-451 and miR-93 were also specific when analyzed with reference to different levels of CA125. This study shows that Solexa sequencing provides a promising method for cancer-related miRNA profiling, and selectively expressed miRNAs could be used as potential serum-based biomarkers for ovarian cancer diagnosis.

MicroRNA-27a Inhibits Cell Migration and Invasion of Fibroblast-Like Synoviocytes by Targeting Follistatin-Like Protein 1 in Rheumatoid Arthritis

  • Shi, Dong-liang;Shi, Gui-rong;Xie, Jing;Du, Xu-zhao;Yang, Hao
    • Molecules and Cells
    • /
    • v.39 no.8
    • /
    • pp.611-618
    • /
    • 2016
  • Fibroblast-like synoviocytes (FLS) with aberrant expression of microRNA (miRNA) are critical pathogenic regulators in rheumatoid arthritis (RA). Previous studies have found that overexpression or silencing of miRNA can contribute to the development of miRNA-based therapeutics in arthritis models. In this study, we explored the effects of miR-27a on cell migration and invasion in cultured FLS from RA patients. We found that miR-27a was markedly downregulated in the serum, synovial tissue, and FLS of RA patients. Meanwhile, the expression of follistatin-like protein 1 (FSTL1) was upregulated, which suggests that FSTL1 plays a key role in RA development. The results of a Transwell assay showed that miR-27a inhibited FLS migration and invasion. However, miR-27a inhibition promoted the migration and invasion of FLS. In addition, the down-regulated expression of matrix metalloproteinases (MMP2, MMP9, and MMP13) and Rho family proteins (Rac1, Cdc42, and RhoA) was detected after treatment with miR-27a in RA-FLS by quantitative reverse transcription-PCR and western blot analysis. Then, a luciferase reporter assay validated that miR-27a targeted the 3-untranslated region (3'-UTR) of FSTL1. Moreover, miR-27a caused a significant decrease of FSTL1. In addition, the expression of TLR4 and $NF{\kappa}B$ was inhibited by miR-27a but increased by FSTL1 overexpression. In conclusion, we found that miR-27a inhibited cell migration and invasion of RA-FLS by targeting FSTL1 and restraining the $TLR4/NF{\kappa}B$ pathway.

Association between a Polymorphism in miR-34b/c and Susceptibility to Cancer - a Meta-analysis

  • Lin, Zhuo;Chen, Li;Song, Mei;Shi, Ke-Qing;Tang, Kai-Fu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7251-7255
    • /
    • 2014
  • MicroRNAs (miRNAs) act as tumor suppressors or promoters in neoplasia by regulating relative geneexpression. The association between a single nucleotide polymorphism (SNP) rs4938723 in miR-34b/c and susceptibility to cancers was inconsistent in previous studies. In this study, we conducted a literature search of PubMed, Web of Science and Embase to identify all relevant studies in this meta-analysis with 6,036 cases and 6,204 controls. We found that the miR-34b/c rs4938723 polymorphism was significantly associated with increased risk of cancers in the heterozygous model (TC versus TT, OR=1.09, 95% CI=1.01-1.18, P=0.02). Subgroup analysis also revealed increased risk for Asian ethnicity in the heterozygous model (TC versus TT, OR=1.12, 95% CI=1.02-1.22, P=0.02), but decreased risk of colorectal cancer in homozygote model (CC versus TT, OR=0.66, 95% CI=0.47-0.92, P=0.02) and in the recessive model (CC versus TC+TT, OR=0.67, 95% CI=0.48-0.93, P=0.02) by cancer type. The current meta-analysis indicated that the miR-34b/c rs4938723 polymorphism may decrease susceptibility to colorectal cancer. Well-designed studies with larger sample size are required to further validate the results.